cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Miguel Alejandro Moreno Barrientos

Miguel Alejandro Moreno Barrientos's wiki page.

Miguel Alejandro Moreno Barrientos has authored 2 sequences.

A287013 Decimal expansion of Sum_{n>=0} 1/A000178(n).

Original entry on oeis.org

2, 5, 8, 6, 8, 3, 4, 5, 3, 0, 9, 3, 6, 4, 7, 1, 9, 0, 1, 4, 9, 8, 8, 4, 7, 4, 4, 1, 6, 9, 1, 9, 4, 3, 4, 7, 1, 7, 3, 3, 5, 7, 0, 9, 0, 1, 2, 7, 8, 8, 7, 7, 9, 4, 4, 7, 5, 1, 4, 8, 4, 8, 4, 7, 9, 5, 4, 6, 2, 0, 6, 0, 2, 5, 4, 9, 7, 0, 0, 8, 3, 6, 8, 2, 2, 7, 3, 7, 3, 3, 8, 7, 8, 8, 1, 4, 3, 1, 5, 3, 2, 7, 1, 6, 1, 0, 9, 0, 6
Offset: 1

Keywords

Examples

			2.58683453093647190149884744169194347173357090127887794475148...
		

Crossrefs

Programs

  • Mathematica
    NSum[1/BarnesG[n], {n, 2, Infinity}, WorkingPrecision -> 115] // RealDigits // First (* Jean-François Alcover, Oct 27 2020 *)
  • PARI
    suminf(n=0, 1/prod(k=2, n, k!)) \\ Michel Marcus, Aug 01 2017

Formula

Equals 1/A137987. - Amiram Eldar, Nov 19 2020

Extensions

More terms from Michel Marcus, Aug 01 2017

A281682 Decimal expansion of Sum_{n>=2} 1/A000166(n).

Original entry on oeis.org

1, 6, 3, 8, 2, 2, 7, 0, 7, 4, 5, 0, 5, 3, 7, 0, 6, 4, 7, 5, 4, 2, 8, 9, 3, 1, 1, 4, 1, 5, 1, 1, 2, 2, 6, 6, 1, 0, 6, 3, 5, 9, 3, 2, 4, 9, 6, 4, 4, 4, 3, 6, 1, 6, 4, 7, 2, 3, 2, 6, 2, 8, 2, 8, 7, 2, 6, 3, 0, 5, 8, 2, 9, 4, 4, 0, 6, 8, 2, 2, 3, 9, 8, 1, 8, 3, 0, 3, 9, 5, 6, 7, 2, 0, 7, 3, 2, 9, 9, 6, 0, 9, 1, 0, 8, 1, 3, 9, 0, 9, 1, 5, 3
Offset: 1

Keywords

Examples

			1.63822707450537064754289311415112266106359324964443616472326282872630582...
		

Crossrefs

Cf. A000166.

Programs

  • Derive
    PrecisionDigits ≔ 1000
    NotationDigits ≔ 1000
    sum(1/ROUND(n!/e), n, 2, 500)
  • Mathematica
    a[n_]:=If[n>0, Round[n!/E], 1]; RealDigits[Sum[1/a[n], {n, 2, 500}], 10, 113][[1]](* Indranil Ghosh, Mar 12 2017 *)

Formula

Equals Sum_{n>=2} 1/round(n!/e).