cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A203415 Vandermonde determinant of the first n nonprimes (A018252).

Original entry on oeis.org

1, 3, 30, 1680, 201600, 87091200, 1103619686400, 275463473725440000, 240529195987579699200000, 1163776461866305616609280000000, 344605941225348705438623229542400000000, 3717059729911125118574880410324812431360000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A203416, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203417.

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    A203415:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
    [A203415(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* this sequence *)
    Table[v[n+1]/v[n], {n,1,z}]      (* A203416 *)
    Table[v[n]/d[n], {n,1,z}]        (* A203417 *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def A203415(n): return product(product(A018252[k+1]-A018252[j] for j in range(k+1)) for k in range(n-1))
    [A203415(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024

A203416 a(n) = A203415(n+1)/A203415(n).

Original entry on oeis.org

3, 10, 56, 120, 432, 12672, 249600, 873180, 4838400, 296110080, 10786406400, 49621572000, 355053404160, 34613526528000, 211189410432000, 1910897049600000, 21311651380219200, 274774815041126400, 62908970812047360000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    A203416:= func< n | n eq 1 select 3 else (&*[A018252[n+1] - A018252[j+1]: j in [0..n-1]]) >;
    [A203416(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* A203415 *)
    Table[v[n+1]/v[n], {n,1,z}]      (* this sequence *)
    Table[v[n]/d[n], {n,1,z}]        (* A203417 *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def A203416(n): return product(A018252[n]-A018252[j] for j in range(n))
    [A203416(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024

A203420 a(n) = A203418(n)/A000178(n).

Original entry on oeis.org

1, 2, 8, 20, 40, 384, 10240, 126720, 1013760, 48660480, 7612661760, 473174507520, 16701626253312, 4036421002199040, 407426244909465600, 23814785343474892800, 932976775107465707520, 26694111965427724713984, 9044593230639040844267520
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A002808:=[n: n in [2..250] | not IsPrime(n)];
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    a:= func< n | n eq 1 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-2]])/BarnesG(n+1) >;
    [a(n): n in [1..40]]; // G. C. Greubel, Feb 24 2024
    
  • Mathematica
    composite = Select[Range[100], CompositeQ]; (* A002808 *)
    z = 20;
    f[j_]:= composite[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}];
    d[n_]:= Product[(i-1)!, {i, 1, n}];
    Table[v[n], {n,z}]           (* A203418 *)
    Table[v[n+1]/v[n], {n,z}]    (* A203419 *)
    Table[v[n]/d[n], {n,z}]      (* this sequence *)
  • SageMath
    A002808=[n for n in (2..250) if not is_prime(n)]
    def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
    def a(n): return product(product(A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n-1))/BarnesG(n+1)
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 24 2024

A203529 a(n) = A203527(n)/A000178(n-1); A000178 = (superfactorials).

Original entry on oeis.org

1, 5, 175, 44100, 60913125, 427756329000, 20552836095792000, 6952965728817588480000, 11895516181976215338950400000, 99606443887767729350960121600000000, 5830034964946921746536425070101217280000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term is an integer.

Crossrefs

Programs

  • Mathematica
    t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
    nonprime = Rest[Union[t]]              (* A018252 *)
    f[j_] := nonprime[[j]]; z = 20;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203527 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203528 *)
    Table[v[n]/d[n], {n, 1, 20}]           (* A203529 *)
Showing 1-4 of 4 results.