Original entry on oeis.org
1, 3, 15, 140, 700, 2520, 44352, 2196480, 47567520, 634233600, 51753461760, 13984935444480, 1448751906201600, 82605199597240320, 32797812715211980800, 5296846753506734899200, 483765735240908144640000, 28985693293514522492928000
Offset: 1
-
A018252:=[n : n in [1..250] | not IsPrime(n) ];
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
v:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
[v(n)/BarnesG(n+1): n in [1..30]]; // G. C. Greubel, Feb 29 2024
-
z=20;
nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
f[j_]:= nonprime[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
d[n_]:= Product[(i-1)!, {i,1,n}];
Table[v[n], {n,1,z}] (* A203415 *)
Table[v[n + 1]/v[n], {n,1,z}] (* A203416 *)
Table[v[n]/d[n], {n,1,z}] (* this sequence *)
-
A018252=[n for n in (1..250) if not is_prime(n)]
def BarnesG(n): return product(factorial(j) for j in range(1, n-1))
def v(n): return product(product(A018252[k-1]-A018252[j-1] for j in range(1,k)) for k in range(2,n+1))
[v(n)/BarnesG(n+1) for n in range(1,31)] # G. C. Greubel, Feb 29 2024
Original entry on oeis.org
3, 10, 56, 120, 432, 12672, 249600, 873180, 4838400, 296110080, 10786406400, 49621572000, 355053404160, 34613526528000, 211189410432000, 1910897049600000, 21311651380219200, 274774815041126400, 62908970812047360000
Offset: 1
-
A018252:=[n : n in [1..250] | not IsPrime(n) ];
A203416:= func< n | n eq 1 select 3 else (&*[A018252[n+1] - A018252[j+1]: j in [0..n-1]]) >;
[A203416(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
-
z=20;
nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
f[j_]:= nonprime[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
d[n_]:= Product[(i-1)!, {i,1,n}];
Table[v[n], {n,1,z}] (* A203415 *)
Table[v[n+1]/v[n], {n,1,z}] (* this sequence *)
Table[v[n]/d[n], {n,1,z}] (* A203417 *)
-
A018252=[n for n in (1..250) if not is_prime(n)]
def A203416(n): return product(A018252[n]-A018252[j] for j in range(n))
[A203416(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203527
a(n) = Product_{1 <= i < j <= n} (A018252(i) + A018252(j)); A018252 = nonprime numbers.
Original entry on oeis.org
1, 5, 350, 529200, 17542980000, 14783258730240000, 511420331138811494400000, 871980665589501641034301440000000, 60150685659205753788492548338089984000000000, 182771197941564481989784945231570147139911680000000000000
Offset: 1
-
b:= proc(n) option remember; local k; if n=1 then 1
else for k from 1+b(n-1) while isprime(k) do od; k fi
end:
a:= n-> mul(mul(b(i)+b(j), i=1..j-1), j=2..n):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
nonprime = Rest[Union[t]] (* A018252 *)
f[j_] := nonprime[[j]]; z = 20;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203527 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203528 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203529 *)
Showing 1-4 of 4 results.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions