cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203415 Vandermonde determinant of the first n nonprimes (A018252).

Original entry on oeis.org

1, 3, 30, 1680, 201600, 87091200, 1103619686400, 275463473725440000, 240529195987579699200000, 1163776461866305616609280000000, 344605941225348705438623229542400000000, 3717059729911125118574880410324812431360000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A203416, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203417.

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    A203415:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
    [A203415(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* this sequence *)
    Table[v[n+1]/v[n], {n,1,z}]      (* A203416 *)
    Table[v[n]/d[n], {n,1,z}]        (* A203417 *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def A203415(n): return product(product(A018252[k+1]-A018252[j] for j in range(k+1)) for k in range(n-1))
    [A203415(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024

A203417 a(n) = A203415(n)/A000178(n).

Original entry on oeis.org

1, 3, 15, 140, 700, 2520, 44352, 2196480, 47567520, 634233600, 51753461760, 13984935444480, 1448751906201600, 82605199597240320, 32797812715211980800, 5296846753506734899200, 483765735240908144640000, 28985693293514522492928000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    v:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
    [v(n)/BarnesG(n+1): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* A203415 *)
    Table[v[n + 1]/v[n], {n,1,z}]    (* A203416 *)
    Table[v[n]/d[n], {n,1,z}]        (* this sequence *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def BarnesG(n): return product(factorial(j) for j in range(1, n-1))
    def v(n): return product(product(A018252[k-1]-A018252[j-1] for j in range(1,k)) for k in range(2,n+1))
    [v(n)/BarnesG(n+1) for n in range(1,31)] # G. C. Greubel, Feb 29 2024

A203528 a(n) = v(n+1)/v(n), where v=A203527.

Original entry on oeis.org

5, 70, 1512, 33150, 842688, 34594560, 1705017600, 68981673600, 3038555520000, 212396207063040, 16628926183833600, 985240084758930000, 61949330611480166400, 6155242080686899200000, 445283762978503737288000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
    nonprime = Rest[Union[t]]              (* A018252 *)
    f[j_] := nonprime[[j]]; z = 20;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203527 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203528 *)
    Table[v[n]/d[n], {n, 1, 20}]           (* A203529 *)

Extensions

Definition corrected by Georg Fischer, Nov 26 2021
Showing 1-3 of 3 results.