A203527 a(n) = Product_{1 <= i < j <= n} (A018252(i) + A018252(j)); A018252 = nonprime numbers.
1, 5, 350, 529200, 17542980000, 14783258730240000, 511420331138811494400000, 871980665589501641034301440000000, 60150685659205753788492548338089984000000000, 182771197941564481989784945231570147139911680000000000000
Offset: 1
Keywords
Programs
-
Maple
b:= proc(n) option remember; local k; if n=1 then 1 else for k from 1+b(n-1) while isprime(k) do od; k fi end: a:= n-> mul(mul(b(i)+b(j), i=1..j-1), j=2..n): seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
Mathematica
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}]; nonprime = Rest[Union[t]] (* A018252 *) f[j_] := nonprime[[j]]; z = 20; v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}] d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *) Table[v[n], {n, 1, z}] (* A203527 *) Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203528 *) Table[v[n]/d[n], {n, 1, 20}] (* A203529 *)
Extensions
Name edited by Alois P. Heinz, Jul 23 2017
Comments