A203528
a(n) = v(n+1)/v(n), where v=A203527.
Original entry on oeis.org
5, 70, 1512, 33150, 842688, 34594560, 1705017600, 68981673600, 3038555520000, 212396207063040, 16628926183833600, 985240084758930000, 61949330611480166400, 6155242080686899200000, 445283762978503737288000
Offset: 1
-
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
nonprime = Rest[Union[t]] (* A018252 *)
f[j_] := nonprime[[j]]; z = 20;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203527 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203528 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203529 *)
Original entry on oeis.org
1, 5, 175, 44100, 60913125, 427756329000, 20552836095792000, 6952965728817588480000, 11895516181976215338950400000, 99606443887767729350960121600000000, 5830034964946921746536425070101217280000000
Offset: 1
-
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
nonprime = Rest[Union[t]] (* A018252 *)
f[j_] := nonprime[[j]]; z = 20;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203527 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203528 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203529 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
Showing 1-3 of 3 results.
Comments