cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007685 a(n) = Product_{k=1..n} binomial(2*k,k).

Original entry on oeis.org

1, 2, 12, 240, 16800, 4233600, 3911846400, 13425456844800, 172785629592576000, 8400837310791045120000, 1552105098192510332190720000, 1094904603628138948657963991040000, 2960792853328653706847125274154762240000, 30794022150329995743434211126374020153344000000
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    [seq(mul(binomial(2*k,k),k=1..n),n=0..16)];
  • Mathematica
    Table[Product[Binomial[2*k, k], {k, 1, n}], {n, 0, 50}] (* G. C. Greubel, Feb 02 2017 *)
  • PARI
    a(n) = prod(k=1,n, binomial(2*k, k)); \\ Michel Marcus, Sep 18 2015

Formula

a(0) = 1, a(n) = (2^(2*n)*a(n - 1)*Gamma(n + 1/2))/(sqrt(Pi)*Gamma(n + 1)). - Ilya Gutkovskiy, Sep 18 2015
a(n) = (2^(n^2 + n - 1/24)*A^(3/2)*Pi^(-n/2 - 1/4)*BarnesG(n + 3/2))/(e^(1/8)*BarnesG(n + 2)), where A is the Glaisher-Kinkelin constant (A074962), BarnesG is the Barnes G-function. - Ilya Gutkovskiy, Sep 18 2015
a(n) ~ A^(3/2) * 2^(n^2 + n - 7/24) * exp(n/2 - 1/8) / (Pi^((n+1)/2) * n^(n/2 + 3/8)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 16 2016
For n>0, a(n) = 2^((n+1)/2) * sqrt(BarnesG(2*n)) * Gamma(2*n) / (n * BarnesG(n)^2 * Gamma(n)^(7/2)). - Vaclav Kotesovec, Apr 20 2024
Product_{1 <= j <= i <= n} (i + j)/(i - j + 1). - Peter Bala, Oct 25 2024

A203470 a(n) = Product_{2 <= i < j <= n+1} (i + j).

Original entry on oeis.org

1, 5, 210, 105840, 838252800, 129459762432000, 466521199899955200000, 45727437650097816797184000000, 139352822480378029387123167068160000000, 14863555768518278744824500982673408262144000000000, 61707340455179609358720715109663452970925870494515200000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as (conjectured) in A102693. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203471.

Crossrefs

Programs

  • Magma
    [(&*[Factorial(2*k-1)/Factorial(k+1): k in [2..n+1]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
    
  • Maple
    a:= n-> mul(mul(i+j, i=2..j-1), j=3..n+1):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= j+1; z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n, z}]           (* A203470 *)
    Table[v[n+1]/v[n], {n, z-1}]  (* A102693 *)
    Table[v[n]/d[n], {n, 20}]     (* A203471 *)
    (* Second program *)
    Table[Product[Gamma[2*j]/Gamma[j+2], {j,2,n+1}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
  • Python
    from math import prod, factorial
    def A203470(n): return prod(factorial(2*k+1)//factorial(k+2) for k in range(1,n+1)) # Chai Wah Wu, Aug 26 2025
  • SageMath
    [product(gamma(2*k)/gamma(k+2) for k in range(2,n+2)) for n in range(1,20)] # G. C. Greubel, Aug 29 2023
    

Formula

a(n) ~ sqrt(A) * 2^(n^2 + 5*n/2 + 41/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 71/24) / Pi, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = Product_{j=2..n+1} Gamma(2*j)/Gamma(j+2).
a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2)/(Pi^(n/2)*Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)) ).
a(n) = (BarnesG(n+2)/2^n) * Product_{j=2..n+1} Catalan(j). (End)

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A296590 a(n) = Product_{k=0..n} binomial(2*n - k, k).

Original entry on oeis.org

1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Comments

Apart from the offset the same as A203469. - R. J. Mathar, Alois P. Heinz, Jan 02 2018

Crossrefs

Programs

  • Maple
    A296590 := proc(n)
        mul( binomial(2*n-k,k),k=0..n) ;
    end proc:
    seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
  • Mathematica
    Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
    Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]

Formula

a(n) = A^(3/2) * 2^(n^2 - 1/24) * BarnesG(n + 3/2) / (exp(1/8) * Pi^(n/2 + 1/4) * BarnesG(n + 2)), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^((n+1)/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962.
Product_{1 <= j <= i <= n} (i + j - 1)/(i - j + 1). - Peter Bala, Oct 25 2024

A338550 Number of binary trees of height n such that the number of nodes at depth d equals d+1 for every d = 0..n.

Original entry on oeis.org

1, 1, 4, 60, 3360, 705600, 558835200, 1678182105600, 19198403288064000, 840083731079104512000, 141100463472046393835520000, 91242050302344912388163665920000, 227753296409896438988240405704212480000, 2199573010737856838816729366169572868096000000, 82356764599728553816070191604819734458909327360000000
Offset: 0

Views

Author

Marcel K. Goh, Nov 02 2020

Keywords

Comments

To satisfy the constraint, there must be n+1 nodes at depth n, and there are 2n allowed slots for a new node.
A binary tree with such a level profile contains A000217(n+1) nodes.

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[2k,k+1],{k,n}],{n,0,14}] (* or *)
    Table[2^(n^2+n-1/24)Glaisher^(3/2)Pi^(-1/4-n/2)BarnesG[3/2+n]Gamma[1+n]/(Exp[1/8]BarnesG[3+n]),{n,0,14}] (* Stefano Spezia, Nov 02 2020 *)

Formula

a(n) = binomial(2*n,n+1)*a(n-1), a(0)=1.
a(n) = Product_{k=1..n} binomial(2*k,k+1).
a(n) = 2^(n^2+n-1/24)*A^(3/2)*Pi^(-1/4-n/2)*G(3/2 + n)*Gamma(1 + n)/(exp(1/8)*G(3 + n)) where A is the Glaisher-Kinkelin constant and G is the Barnes G function. - Stefano Spezia, Nov 02 2020
a(n) ~ A^(3/2) * 2^(-7/24 + n + n^2) * exp(-1/8 + n/2) / (n^(11/8 + n/2) * Pi^((n+1)/2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023
a(n) = Product_{1 <= j <= i <= n-1} (i + j + 2)/(i - j + 1). - Peter Bala, Oct 25 2024
Showing 1-4 of 4 results.