cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A268196 a(n) = Product_{k=0..n} binomial(3*k,k).

Original entry on oeis.org

1, 3, 45, 3780, 1871100, 5618913300, 104309506501200, 12129109415959536000, 8920608231265175901456000, 41809329673499408044341517200000, 1256161937180234817183361549396758000000, 243113461110708695347467432844366521953760000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[3k,k],{k,0,n}],{n,0,12}]
    FoldList[Times,Table[Binomial[3n,n],{n,0,15}]] (* Harvey P. Dale, Apr 23 2018 *)

Formula

a(n) = A^(7/6) * Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36)* BarnesG(n + 4/3) * BarnesG(n + 5/3) / (exp(7/72) * 2^(n^2 + 2*n + 5/8) * Pi^(n/2 + 5/12) * BarnesG(n + 3/2) * BarnesG(n + 2)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(7/6) * Gamma(1/3)^(1/3) * 3^(11/36 + 2*n + 3*n^2/2) * exp(n/2 - 7/72) / (2^(n^2 + 2*n + 7/8) * Pi^(n/2 + 2/3) * n^(n/2 + 25/72)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = A268504(n) / (A000178(n) * A098694(n)).

A296591 a(n) = Product_{k=0..n} (n + k)!.

Original entry on oeis.org

1, 2, 288, 12441600, 421382062080000, 23120161750363668480000000, 3683853104727992382799761899520000000000, 2777528195026874073410445622205453260145295360000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          a(n-1) *(2*n-1)! *(2*n)! /(n-1)!)
        end:
    seq(a(n), n=0..7);  # Alois P. Heinz, Jul 11 2024
  • Mathematica
    Table[Product[(n + k)!, {k, 0, n}], {n, 0, 10}]
    Table[Product[(2*n - k)!, {k, 0, n}], {n, 0, 10}]
    Table[BarnesG[2*n + 2]/BarnesG[n + 1], {n, 0, 10}]

Formula

a(n) = BarnesG(2*n + 2) / BarnesG(n + 1).
a(n) ~ 2^(2*n^2 + 5*n/2 + 11/12) * n^((n+1)*(3*n+1)/2) * Pi^((n+1)/2) / exp(9*n^2/4 + 2*n).

Extensions

Missing a(0)=1 inserted by Georg Fischer, Nov 18 2021

A172431 Even row Pascal-square read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10
Offset: 1

Views

Author

Mark Dols, Feb 02 2010

Keywords

Comments

Apart from signs identical to A053123. Mirror of A078812.
As a triangle, row n consists of the coefficients of Morgan-Voyce polynomial B(n,x); e.g., B(3,x)=x^3+6x^2+10x+4. As a triangle, rows 0 to 4 are as follows: 1 1...2 1...4...3 1...6...10...4 1...8...21...20...5 See A054142 for coefficients of Morgan-Voyce polynomial b(n,x).
Scaled version of A119900. - Philippe Deléham, Feb 24 2012
A172431 is jointly generated with A054142 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

Examples

			Array begins:
  1,  2,  3,  4,  5,  6, ...
  1,  4, 10, 20, 35, ...
  1,  6, 21, 56, ...
  1,  8, 36, ...
  1, 10, ...
  1, ...
  ...
Example:
Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above.
For n = 9 the a(9) = 10 solution is 2*4 - 1 + 3.
From _Philippe Deléham_, Feb 24 2012: (Start)
Triangle T(n,k) begins:
  1;
  1,   2;
  1,   4,   3;
  1,   6,  10,   4;
  1,   8,  21,  20,   5;
  1,  10,  36,  56,  35,   6;
  1,  12,  55, 120, 126,  56,   7; (End)
From _Philippe Deléham_, Mar 22 2012: (Start)
(1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins:
  1;
  1,   0;
  1,   2,   0;
  1,   4,   3,   0;
  1,   6,  10,   4,   0;
  1,   8,  21,  20,   5,   0;
  1,  10,  36,  56,  35,   6,   0;
  1,  12,  55, 120, 126,  56,   7,   0; (End)
		

Crossrefs

Cf. A078812, A053123, A007318, A001906 (antidiagonals sums), A007685.
Cf. also A054142, A082985.

Programs

  • GAP
    F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019
  • Magma
    F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019
    
  • Maple
    T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)):
    for n from 0 to 10 do seq(T(n,k), k=0..n-1) od; # Peter Luschny, May 10 2016
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A054142 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A172431 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *)
  • PARI
    T(n,k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) );
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2019
    
  • Sage
    [[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019
    

Formula

As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4,... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013]
As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012
T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016
As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1) for n >= 1. - Werner Schulte, Apr 26 2017
As triangle T(n,k) with 1 <= k <= n: T(n,k) = binomial(2*n-k, k-1). - Paul Weisenhorn, Nov 25 2019

A262261 a(n) = Product_{k=0..n} binomial(4*k,k).

Original entry on oeis.org

1, 4, 112, 24640, 44844800, 695273779200, 93581069585203200, 110803729631663996928000, 1165466869384731418887782400000, 109720873815210197693149787062272000000, 93006053830822450607559730484293052399616000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 17 2016

Keywords

Comments

In general, for p > 1, Product_{k=0..n} binomial(p*k,k) ~ A^(1 + 1/(p*(p-1))) * exp(n/2 - 1/12 - 1/(12*p*(p-1))) * n^(-1/3 - n/2 - 1/(12*p*(p-1))) * (p-1)^(1/(12*(p-1)) - p*n/2 - (p-1)*n^2/2) * p^(-1/(12*p) + (p+1)*n/2 + p*n^2/2) * (2*Pi)^(-1/4 - n/2) * Product_{j=1..p-1} (Gamma(j/(p-1))^(j/(p-1)) / Gamma(j/p)^(j/p)), where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[4*k,k],{k,0,n}],{n,0,10}]

Formula

a(n) ~ A^(13/12) * 2^(9*n/2 + 4*n^2) * exp(n/2 - 13/144) * Gamma(1/4)^(1/2) / (Gamma(1/3)^(1/3) * 3^(11/36 + 2*n + 3*n^2/2) * Pi^(7/12 + n/2) * n^(49/144 + n/2)), where A = A074962 is the Glaisher-Kinkelin constant.

A073617 Consider Pascal's triangle A007318; a(n) = product of terms at +45 degrees slope with the horizontal.

Original entry on oeis.org

1, 1, 1, 2, 3, 12, 30, 240, 1050, 16800, 132300, 4233600, 61122600, 3911846400, 104886381600, 13425456844800, 674943865596000, 172785629592576000, 16407885372638760000, 8400837310791045120000, 1515727634953623371280000, 1552105098192510332190720000
Offset: 0

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Comments

The sum of the terms pertaining to the above product is the (n+1)-th Fibonacci number: 1 + 5 + 6 + 1 = 13.
n divides A073617(n+1) for n>=1; see the Mathematica section. [Clark Kimberling, Feb 29 2012]

Examples

			For n=6 the diagonal is 1,5,6,1 and product of the terms = 30 hence a(6) = 30.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(n-i, i), i=0..floor(n/2)):
    seq(a(n), n=0..21);  # Alois P. Heinz, Nov 27 2023
  • Mathematica
    p[n_] := Product[Binomial[n + 1 - k, k], {k, 1, Floor[(n + 1)/2]}]
    Table[p[n], {n, 1, 20}]   (* A073617(n+1) *)
    Table[p[n]/n, {n, 1, 20}] (* A208649 *)
    (* Clark Kimberling, Feb 29 2012 *)
    (* Second program *)
    Join[{1}, Table[If[EvenQ[n], 2^(3/2 - n/4) * Sqrt[BarnesG[n]] * Gamma[n] / (n*BarnesG[n/2]^2 * Gamma[n/2]^(7/2)), Glaisher^3 * 2^((-10 + 3*n + 6*n^2)/12) * BarnesG[n/2]^2 * Gamma[n/2]^(5/2) / (E^(1/4) * Pi^(1/4 + n/2) * Sqrt[BarnesG[n]] * Gamma[n])], {n, 1, 25}]] (* Vaclav Kotesovec, Jun 10 2025 *)

Formula

a(n) = Product_{k=0..floor(n/2)} binomial(n-k,k).
a(2n+1)/a(2n-1) = binomial(2n,n); a(2n)/a(2n-2) = (1/2)*binomial(2n,n); (a(2n+1)*a(2n-2))/(a(2n)*a(2n-1)) = 2. - John Molokach, Sep 09 2013
a(n) ~ A^(3/2) * 2^(n*(n+1)/4 - 1/6 + (-1)^n/4) * exp(n/4 - 1/8) / (n^((n+1)/4 + (-1)^n/8) * Pi^(n/4 + 3/8 + (-1)^n/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jun 10 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003

A203471 a(n) = v(n)/A000178(n), v = A203470, A000178 = (superfactorials).

Original entry on oeis.org

1, 5, 105, 8820, 2910600, 3745942200, 18748440711000, 364619674947528000, 27558684271884061296000, 8100324068034882136733280000, 9267305355220395466643896716480000, 41308086890359390753018505224037952000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Factorial(2*k+1)/(Factorial(k-1)*Factorial(k+2)): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j+1; z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n, z}]           (* A203470 *)
    Table[v[n+1]/v[n], {n, z-1}]  (* A102693 *)
    Table[v[n]/d[n], {n, 20}]     (* A203471 *)
    (* Second program *)
    Table[Product[Gamma[2*j+2]/(Gamma[j]*Gamma[j+3]), {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
  • SageMath
    [product(gamma(2*k+4)/(gamma(k+1)*gamma(k+4)) for k in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023

Formula

From G. C. Greubel, Aug 29 2023: (Start)
a(n) = Product_{j=1..n} Gamma(2*j+2)/(Gamma(j)*Gamma(j+3)).
a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2) /(Pi^(n/2) * Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)*BarnesG(n+1)) ).
a(n) = (BarnesG(n+2)/(2^n * BarnesG(n+1))) * Product_{j=1..n} Catalan(j+1). (End)
a(n) ~ A^(3/2) * 2^(n^2 + 2*n + 41/24) * exp(n/2 - 1/8) / (n^(n/2 + 23/8) * Pi^(n/2 + 1)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 19 2023
a(n) = Product_{1 <= j <= i <= n-1} (i + j + 3)/(i - j + 1). - Peter Bala, Oct 25 2024

A296589 a(n) = Product_{k=0..n} binomial(2*n, k).

Original entry on oeis.org

1, 2, 24, 1800, 878080, 2857680000, 63117561830400, 9577928124440387712, 10077943267571584204800000, 74054886893191804566576837427200, 3822038592032831128918160803430400000000, 1391938996758770867922655936144556115037409280000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[2*n, k], {k, 0, n}], {n, 0, 12}]
    Table[((2*n)!)^(n+1) / (n! * BarnesG[2*n + 2]), {n, 0, 12}]

Formula

a(n) = ((2*n)!)^(n+1) / (n! * BarnesG(2*n + 2)).
a(n) ~ A * exp(n^2 + n - 1/24) / (2^(5/12) * Pi^((n+1)/2) * n^(n/2 + 5/12)), where A is the Glaisher-Kinkelin constant A074962.

Extensions

Missing a(0)=1 inserted by Georg Fischer, Nov 18 2021

A296590 a(n) = Product_{k=0..n} binomial(2*n - k, k).

Original entry on oeis.org

1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Comments

Apart from the offset the same as A203469. - R. J. Mathar, Alois P. Heinz, Jan 02 2018

Crossrefs

Programs

  • Maple
    A296590 := proc(n)
        mul( binomial(2*n-k,k),k=0..n) ;
    end proc:
    seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
  • Mathematica
    Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
    Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]

Formula

a(n) = A^(3/2) * 2^(n^2 - 1/24) * BarnesG(n + 3/2) / (exp(1/8) * Pi^(n/2 + 1/4) * BarnesG(n + 2)), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^((n+1)/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962.
Product_{1 <= j <= i <= n} (i + j - 1)/(i - j + 1). - Peter Bala, Oct 25 2024

A367567 a(n) = Product_{k=0..n} (3*k)! / k!^3.

Original entry on oeis.org

1, 6, 540, 907200, 31434480000, 23788231346880000, 408042767492495815680000, 162838835029822082951032012800000, 1541352909587869227178909850805190656000000, 351233376660297011570511252132131832794456064000000000, 1949695346852822356399298814748829537555898997004605685760000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k)!/k!^3, {k, 0, n}], {n, 0, 10}]
    Table[Product[Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]

Formula

a(n) = Product_{k=0..n} binomial(3*k,k) * binomial(2*k,k).
a(n) = A268504(n) / A000178(n)^3.
a(n) = A268504(n) / A061719(n).
a(n) = A007685(n) * A268196(n).
a(n) ~ A^(8/3) * Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36) * exp(n - 2/9) / (n^(n + 13/18) * (2*Pi)^(n + 7/6)), where A is the Glaisher-Kinkelin constant A074962.
Showing 1-10 of 20 results. Next