A382529 The composite numbers ordered by decreasing reciprocal-distance from the primes (reciprocal distance defined in comments).
4, 6, 9, 8, 10, 15, 12, 14, 21, 26, 16, 25, 18, 20, 27, 34, 22, 33, 24, 35, 39, 28, 50, 30, 32, 45, 56, 49, 36, 51, 38, 64, 55, 40, 57, 42, 44, 63, 76, 46, 120, 65, 119, 93, 48, 69, 86, 121, 118, 92, 75, 52, 54, 94, 77, 122, 117, 81, 58, 85, 60, 62, 87, 123, 91, 144
Offset: 1
Keywords
Examples
a(3) and a(4) are 9 and 8 respectively. 9 precedes 8 in the list of composites because min(1/7-1/9,1/9-1/11) is greater than min(1/7-1/8,1/8-1/11).
Links
- James Propp, Table of n, a(n) for n = 1..1440
- Hugo Pfoertner, Plot of a(n) and 4*n for n<=250000.
- James Propp, Plot of a(n) for n = 1..1440
Programs
-
Mathematica
epsilon = .0005; (* terms < 1/epsilon *); table = {}; For[m = 2, m <= 1/epsilon, m++, If[! PrimeQ[m], i = m; While[! PrimeQ[i], --i]; j = m; While[! PrimeQ[j], ++j]; dist = Min[1/i - 1/m, 1/m - 1/j]; If[dist > epsilon, table = Append[table, {dist, m}]]]]; init = Reverse[Sort[table]]; Transpose[init][[2]]
-
PARI
a382529(nterms) = {my(m=nterms+nterms/log(nterms)+3*nterms/log(nterms)^2, mc=floor(m*if(nterms<337963, 4, log(m)/2-1)), C=vectorsmall(mc), L=List(), nc=0); forcomposite(n=4, mc, C[nc++]=n; my(d=min(1/precprime(n)-1/n,1/n-1/nextprime(n))); listput(L,d)); my(P=vecsort(L,,5)); vecextract(Vec(C),P)[1..nterms]}; \\ Hugo Pfoertner, Apr 22 2025
Extensions
More terms from Hugo Pfoertner, Mar 30 2025
Comments