A007685
a(n) = Product_{k=1..n} binomial(2*k,k).
Original entry on oeis.org
1, 2, 12, 240, 16800, 4233600, 3911846400, 13425456844800, 172785629592576000, 8400837310791045120000, 1552105098192510332190720000, 1094904603628138948657963991040000, 2960792853328653706847125274154762240000, 30794022150329995743434211126374020153344000000
Offset: 0
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..50
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
-
[seq(mul(binomial(2*k,k),k=1..n),n=0..16)];
-
Table[Product[Binomial[2*k, k], {k, 1, n}], {n, 0, 50}] (* G. C. Greubel, Feb 02 2017 *)
-
a(n) = prod(k=1,n, binomial(2*k, k)); \\ Michel Marcus, Sep 18 2015
A296591
a(n) = Product_{k=0..n} (n + k)!.
Original entry on oeis.org
1, 2, 288, 12441600, 421382062080000, 23120161750363668480000000, 3683853104727992382799761899520000000000, 2777528195026874073410445622205453260145295360000000000000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1) *(2*n-1)! *(2*n)! /(n-1)!)
end:
seq(a(n), n=0..7); # Alois P. Heinz, Jul 11 2024
-
Table[Product[(n + k)!, {k, 0, n}], {n, 0, 10}]
Table[Product[(2*n - k)!, {k, 0, n}], {n, 0, 10}]
Table[BarnesG[2*n + 2]/BarnesG[n + 1], {n, 0, 10}]
Original entry on oeis.org
1, 5, 105, 8820, 2910600, 3745942200, 18748440711000, 364619674947528000, 27558684271884061296000, 8100324068034882136733280000, 9267305355220395466643896716480000, 41308086890359390753018505224037952000000, 718093999369842998535768272223944392254720000000
Offset: 1
-
[(&*[Factorial(2*k+1)/(Factorial(k-1)*Factorial(k+2)): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
-
(* First program *)
f[j_]:= j+1; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}]
Table[v[n], {n, z}] (* A203470 *)
Table[v[n+1]/v[n], {n, z-1}] (* A102693 *)
Table[v[n]/d[n], {n, 20}] (* A203471 *)
(* Second program *)
Table[Product[Gamma[2*j+2]/(Gamma[j]*Gamma[j+3]), {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
-
[product(gamma(2*k+4)/(gamma(k+1)*gamma(k+4)) for k in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
A296590
a(n) = Product_{k=0..n} binomial(2*n - k, k).
Original entry on oeis.org
1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0
Cf.
A001142,
A007685,
A086205,
A098694,
A110131,
A112332,
A203471,
A268196,
A296589,
A296591,
A338550.
-
A296590 := proc(n)
mul( binomial(2*n-k,k),k=0..n) ;
end proc:
seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
-
Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]
A338550
Number of binary trees of height n such that the number of nodes at depth d equals d+1 for every d = 0..n.
Original entry on oeis.org
1, 1, 4, 60, 3360, 705600, 558835200, 1678182105600, 19198403288064000, 840083731079104512000, 141100463472046393835520000, 91242050302344912388163665920000, 227753296409896438988240405704212480000, 2199573010737856838816729366169572868096000000, 82356764599728553816070191604819734458909327360000000
Offset: 0
-
Table[Product[Binomial[2k,k+1],{k,n}],{n,0,14}] (* or *)
Table[2^(n^2+n-1/24)Glaisher^(3/2)Pi^(-1/4-n/2)BarnesG[3/2+n]Gamma[1+n]/(Exp[1/8]BarnesG[3+n]),{n,0,14}] (* Stefano Spezia, Nov 02 2020 *)
Showing 1-5 of 5 results.
Comments