A296589
a(n) = Product_{k=0..n} binomial(2*n, k).
Original entry on oeis.org
1, 2, 24, 1800, 878080, 2857680000, 63117561830400, 9577928124440387712, 10077943267571584204800000, 74054886893191804566576837427200, 3822038592032831128918160803430400000000, 1391938996758770867922655936144556115037409280000
Offset: 0
-
Table[Product[Binomial[2*n, k], {k, 0, n}], {n, 0, 12}]
Table[((2*n)!)^(n+1) / (n! * BarnesG[2*n + 2]), {n, 0, 12}]
A296590
a(n) = Product_{k=0..n} binomial(2*n - k, k).
Original entry on oeis.org
1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0
Cf.
A001142,
A007685,
A086205,
A098694,
A110131,
A112332,
A203471,
A268196,
A296589,
A296591,
A338550.
-
A296590 := proc(n)
mul( binomial(2*n-k,k),k=0..n) ;
end proc:
seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
-
Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]
A371603
a(n) = Product_{k=0..n} binomial(n^2, k^2).
Original entry on oeis.org
1, 1, 4, 1134, 333132800, 1319947441510156250, 876533819183888230348458418944000, 1185269534290897564185384010731432113450477770983533184
Offset: 0
-
Table[Product[Binomial[n^2, k^2], {k, 0, n}], {n, 0, 8}]
A371624
a(n) = Product_{k=0..n} (n^2 - k^2)!.
Original entry on oeis.org
1, 1, 144, 1755758592000, 66052111513207347990207922176000000000
Offset: 0
-
Table[Product[((2*n-k)*k)!, {k, 0, n}], {n, 0, 6}]
Table[Product[(n^2 - k^2)!, {k, 0, n}], {n, 0, 6}]
A371643
a(n) = Product_{k=0..n} (n^2 + k^2)!.
Original entry on oeis.org
1, 2, 116121600, 52498561358549216844165257625600000000
Offset: 0
-
Table[Product[(n^2+k^2)!, {k, 0, n}], {n, 0, 5}]
A296607
a(n) = BarnesG(2*n).
Original entry on oeis.org
0, 1, 2, 288, 24883200, 5056584744960000, 6658606584104736522240000000, 127313963299399416749559771247411200000000000, 69113789582492712943486800506462734562847413501952000000000000000
Offset: 0
-
Table[BarnesG[2*n], {n, 0, 10}]
Table[Glaisher^3 * E^(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG[n] * BarnesG[n + 1/2]^2 * BarnesG[n+1], {n, 0, 10}]
A371468
a(n) = Product_{k=0..n} (n^3 + k^3)!.
Original entry on oeis.org
1, 2, 306128067620555980800000
Offset: 0
-
Table[Product[(n^3 + k^3)!, {k, 0, n}], {n, 0, 5}]
A374574
a(n) = Sum_{j=n..2n} j!.
Original entry on oeis.org
1, 3, 32, 870, 46224, 4037880, 522956160, 93928267440, 22324392518400, 6780385526302080, 2561327494111411200, 1177652997443424902400, 647478071469567800985600, 419450149241406188889984000, 316196664211373618844934963200, 274410818470142134209609852672000
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, [1, 3, 32][n+1],
((16*n^3-16*n^2-n+2)*a(n-1)-(n-1)*(16*n^3-20*n^2+6*n-1)
*a(n-2)+2*(2*n-1)*(4*n+1)*(n-1)*(n-2)*a(n-3))/(4*n-3))
end:
seq(a(n), n=0..15);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1) -(n-1)! +(2*n-1)! +(2*n)!)
end:
seq(a(n), n=0..15);
A372116
a(n) = Product_{k=0..n} (n+k)!^k.
Original entry on oeis.org
1, 2, 3456, 128994508800000, 21048441369734473363614597120000000000, 13080442484467245346116306952031286205761554346416540536012800000000000000000000
Offset: 0
-
Table[Product[(n + k)!^k, {k, 0, n}], {n, 0, 8}]
Showing 1-9 of 9 results.
Comments