cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 361 results. Next

A114604 Numerator of partial sums of A005329/A006125.

Original entry on oeis.org

1, 5, 43, 709, 23003, 1481957, 190305691, 48796386661, 25003673060507, 25613941912987493, 52467767892904362139, 214929296497738201165669, 1760788099067877263041671323, 28849467307107603960961499533157
Offset: 0

Views

Author

Joshua Zucker, Dec 14 2005

Keywords

Comments

To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. The probability of having won before n+1 tails (that is, winning by flipping n+1 or fewer heads in a row) is a(n)/A006125(n). The probability of winning for the first time after n tails (that is, by flipping n+1 heads in a row) is A005329(n)/A006125(n).

Examples

			a(3) = 43 because 1/2 + 1/8 + 3/64 = 43/64, or because a(2) * 2^(2+1) + A005329(2) = 5 * 8 + 3 = 43.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, #1[[-1]]*2^(#2 + 1) + Product[2^i - 1, {i, #2}]] & @@ {#, Length[#]} &, {1}, 13] (* Michael De Vlieger, Jul 15 2024 *)

Formula

a(n) = numerator(Sum_{k=0..n} A005329(k)/A006125(k)).
a(n) = a(n-1) * 2^(n+1) + A005329(n).

A186339 a(n)=A006125(n+1)*2^A001840(n).

Original entry on oeis.org

1, 4, 32, 512, 32768, 4194304, 1073741824, 1099511627776, 2251799813685248, 9223372036854775808, 151115727451828646838272, 4951760157141521099596496896, 324518553658426726783156020576256, 85070591730234615865843651857942052864
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform of A186338.

Formula

a(n)=2^binomial(n+1,2)*2^floor((n+1)(n+2)/6).

A197505 Exponential transform of A006125.

Original entry on oeis.org

1, 1, 3, 15, 121, 1665, 43883, 2437423, 289320049, 71423435521, 35912764315347, 36427941634714575, 74226534887938021609, 303199273967377493113473, 2480131664037469755458069819, 40602053121132407513785975382767, 1329877926764331449042460153768864481
Offset: 0

Views

Author

Geoffrey Critzer, Oct 15 2011

Keywords

Comments

a(n) is the number of simple labeled graphs on n nodes where the nodes are divided into any number of groups and no edge connects nodes of different groups. (Nodes within a group are not necessarily connected).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *2^(j*(j-1)/2) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 16 2011
  • Mathematica
    a=Sum[2^Binomial[n,2] x^n/n!,{n,0,20}];  Range[0,20]! CoefficientList[Series[Exp[a-1],{x,0,20}],x]

Formula

E.g.f.: exp(A(x)-1) where A(x) = Sum_{n>=0} 2^C(n,2) x^n/n! is the e.g.f. of A006125.

A136650 Self-convolution of A006125(n) = 2^{n(n-1)/2}.

Original entry on oeis.org

1, 2, 5, 20, 148, 2208, 67904, 4264960, 541216768, 137984868352, 70507295670272, 72128242290524160, 147646152060442771456, 604610628447525580832768, 4952364915780360673188380672, 81134591384874923825347187179520
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2008

Keywords

Programs

  • PARI
    a(n)=sum(k=0,n,2^(k*(k-1)/2 + (n-k)*(n-k-1)/2))

Formula

a(n) = Sum_{k=0..n} 2^{ k(k-1)/2 + (n-k)(n-k-1)/2 }.

A000079 Powers of 2: a(n) = 2^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a000079 = (2 ^)
    a000079_list = iterate (* 2) 1
    -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
    
  • Magma
    [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Magma
    [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Maple
    A000079 := n->2^n; [ seq(2^n,n=0..50) ];
    isA000079 := proc(n)
        local fs;
        fs := numtheory[factorset](n) ;
        if n = 1 then
            true ;
        elif nops(fs) <> 1 then
            false;
        elif op(1,fs) = 2 then
            true;
        else
            false ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Table[2^n, {n, 0, 50}]
    2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
  • Maxima
    A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
    
  • PARI
    unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc
    
  • Python
    def a(n): return 1<Michael S. Branicky, Jul 28 2022
    
  • Python
    def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0  # Peter Luschny, Apr 10 2025
  • Scala
    (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
    
  • Scheme
    (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
    

Formula

a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023

Extensions

Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014

A006318 Large Schröder numbers (or large Schroeder numbers, or big Schroeder numbers).

Original entry on oeis.org

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706, 111818026018, 600318853926, 3236724317174, 17518619320890, 95149655201962, 518431875418926, 2832923350929742, 15521467648875090
Offset: 0

Views

Author

Keywords

Comments

For the little Schröder numbers (or little Schroeder numbers, or small Schroeder numbers) see A001003.
The number of perfect matchings in a triangular grid of n squares (n = 1, 4, 9, 16, 25, ...). - Roberto E. Martinez II, Nov 05 2001
a(n) is the number of subdiagonal paths from (0, 0) to (n, n) consisting of steps East (1, 0), North (0, 1) and Northeast (1, 1) (sometimes called royal paths). - David Callan, Mar 14 2004
Twice A001003 (except for the first term).
a(n) is the number of dissections of a regular (n+4)-gon by diagonals that do not touch the base. (A diagonal is a straight line joining two nonconsecutive vertices and dissection means the diagonals are noncrossing though they may share an endpoint. One side of the (n+4)-gon is designated the base.) Example: a(1)=2 because a pentagon has only 2 such dissections: the empty one and the one with a diagonal parallel to the base. - David Callan, Aug 02 2004
a(n) is the number of separable permutations, i.e., permutations avoiding 2413 and 3142 (see Shapiro and Stephens). - Vincent Vatter, Aug 16 2006
Eric W. Weisstein comments that the Schröder numbers bear the same relationship to the Delannoy numbers (A001850) as the Catalan numbers (A000108) do to the binomial coefficients. - Jonathan Vos Post, Dec 23 2004
a(n) is the number of lattice paths from (0, 0) to (n+1, n+1) consisting of unit steps north N = (0, 1) and variable-length steps east E = (k, 0), with k a positive integer, that stay strictly below the line y = x except at the endpoints. For example, a(2) = 6 counts 111NNN, 21NNN, 3NNN, 12NNN, 11N1NN, 2N1NN (east steps indicated by their length). If the word "strictly" is replaced by "weakly", the counting sequence becomes the little Schröder numbers, A001003 (offset). - David Callan, Jun 07 2006
a(n) is the number of dissections of a regular (n+3)-gon with base AB that do not contain a triangle of the form ABP with BP a diagonal. Example: a(1) = 2 because the square D-C | | A-B has only 2 such dissections: the empty one and the one with the single diagonal AC (although this dissection contains the triangle ABC, BC is not a diagonal). - David Callan, Jul 14 2006
a(n) is the number of (colored) Motzkin n-paths with each upstep and each flatstep at ground level getting one of 2 colors and each flatstep not at ground level getting one of 3 colors. Example: With their colors immediately following upsteps/flatsteps, a(2) = 6 counts U1D, U2D, F1F1, F1F2, F2F1, F2F2. - David Callan, Aug 16 2006
The Hankel transform of this sequence is A006125(n+1) = [1, 2, 8, 64, 1024, 32768, ...]; example: Det([1, 2, 6, 22; 2, 6, 22, 90; 6, 22, 90, 394; 22, 90, 394, 1806]) = 64. - Philippe Deléham, Sep 03 2006
Triangle A144156 has row sums equal to A006318 with left border A001003. - Gary W. Adamson, Sep 12 2008
a(n) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain). Equivalently, it is the order of the Schröder monoid, PC sub n. - Abdullahi Umar, Oct 02 2008
Sum_{n >= 0} a(n)/10^n - 1 = (9 - sqrt(41))/2. - Mark Dols, Jun 22 2010
1/sqrt(41) = Sum_{n >= 0} Delannoy number(n)/10^n. - Mark Dols, Jun 22 2010
a(n) is also the dimension of the space Hoch(n) related to Hochschild two-cocycles. - Ph. Leroux (ph_ler_math(AT)yahoo.com), Aug 24 2010
Let W = (w(n, k)) denote the augmentation triangle (as at A193091) of A154325; then w(n, n) = A006318(n). - Clark Kimberling, Jul 30 2011
Conjecture: For each n > 2, the polynomial sum_{k = 0}^n a(k)*x^{n-k} is irreducible modulo some prime p < n*(n+1). - Zhi-Wei Sun, Apr 07 2013
From Jon Perry, May 24 2013: (Start)
Consider a Pascal triangle variant where T(n, k) = T(n, k-1) + T(n-1, k-1) + T(n-1, k), i.e., the order of performing the calculation must go from left to right (A033877). This sequence is the rightmost diagonal.
Triangle begins:
1;
1, 2;
1, 4, 6;
1, 6, 16, 22;
1, 8, 30, 68, 90;
... (End)
a(n) is the number of permutations avoiding 2143, 3142 and one of the patterns among 246135, 254613, 263514, 524361, 546132. - Alexander Burstein, Oct 05 2014
a(n) is the number of semi-standard Young tableaux of shape n x 2 with consecutive entries. That is, j in P and 1 <= i<= j imply i in P. - Graham H. Hawkes, Feb 15 2015
a(n) is the number of unary-rooted size n unary-binary trees (each node has either 1 or 2 degree out). - John Bodeen, May 29 2017
Conjecturally, a(n) is the number of permutations pi of length n such that s(pi) avoids the patterns 231 and 321, where s denotes West's stack-sorting map. - Colin Defant, Sep 17 2018
a(n) is the number of n X n permutation matrices which percolate under the 2-neighbor bootstrap percolation rule (see Shapiro and Stephens). The number of general n X n matrices of weight n which percolate is given in A146971. - Jonathan Noel, Oct 05 2018
a(n) is the number of permutations of length n+1 which avoid 3142 and 3241. The permutations are precisely the permutations that are sortable by a decreasing stack followed by an increasing stack in series. - Rebecca Smith, Jun 06 2019
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {3>1, 4>1, 1>2} of length 4. That is, the number of length n+1 permutations having no subsequences of length 4 in which the second element is the smallest, and the first element is smaller than the third and fourth elements. - Sergey Kitaev, Dec 10 2020
Named after the German mathematician Ernst Schröder (1841-1902). - Amiram Eldar, Apr 15 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_i <= i for all i, and (ii) the nonzero u_i are weakly increasing. For example, a(2) = 6 counts 00, 01, 02, 10, 11, 12. See link "Some bijections for lattice paths" at A001003. - David Callan, Dec 18 2021
a(n) is the number of separable elements of the Weyl group of type B_n/C_n (see Gaetz and Gao). - Fern Gossow, Jul 31 2023
The number of domino tilings of an Aztec triangle of order n. Dually, the number perfect matchings of the edges in the cellular graph formed by a triangular grid of n squares (n = 1, 4, 9, 16, 25, ...) as in Ciucu (1996). - Michael Somos, Sep 16 2024
a(n) is the number of dissections of a convex (n+3)-sided polygon by non-intersecting diagonals such that none of the dividing diagonals passes through a chosen vertex. - Muhammed Sefa Saydam, Mar 01 2025
a(n) is the number of dissections of a convex (n+m+1)-sided polygon by non-intersecting diagonals such that the selected m consecutive sides of the polygon will be in the same subpolygon. - Muhammed Sefa Saydam, Jul 02 2025

Examples

			a(3) = 22 since the top row of Q^n = (6, 6, 6, 4, 0, 0, 0, ...); where 22 = (6 + 6 + 6 + 4).
G.f. = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + 1806*x^6 + 8858*x^7 + 41586*x^8 + ...
		

References

  • D. Andrica and E. J. Ionascu, On the number of polynomials with coefficients in [n], An. St. Univ. Ovidius Constanta, 2013, to appear.
  • Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
  • Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
  • Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
  • Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
  • O. Bodini, A. Genitrini, F. Peschanski, and N.Rolin, Associativity for binary parallel processes, CALDAM 2015.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24, 618.
  • S. Brlek, E. Duchi, E. Pergola, and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.
  • Xiang-Ke Chang, XB Hu, H Lei, and YN Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
  • William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81, #21, (4), q_n.
  • D. E. Davenport, L. W. Shapiro, and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33.
  • Deng, Eva Y. P.; Dukes, Mark; Mansour, Toufik; and Wu, Susan Y. J.; Symmetric Schröder paths and restricted involutions. Discrete Math. 309 (2009), no. 12, 4108-4115. See p. 4109.
  • E. Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
  • C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
  • Doslic, Tomislav and Veljan, Darko. Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
  • M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
  • Egge, Eric S., Restricted signed permutations counted by the Schröder numbers. Discrete Math. 306 (2006), 552-563. [Many applications of these numbers.]
  • S. Getu et al., How to guess a generating function, SIAM J. Discrete Math., 5 (1992), 497-499.
  • S. Gire, Arbres, permutations a motifs exclus et cartes planaire: quelques problemes algorithmiques et combinatoires, Ph.D. Thesis, Universite Bordeaux I, 1993.
  • N. S. S. Gu, N. Y. Li, and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • Guruswami, Venkatesan, Enumerative aspects of certain subclasses of perfect graphs. Discrete Math. 205 (1999), 97-117.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, Section 2.2.1, Problem 11.
  • D. Kremer, Permutations with forbidden subsequences and a generalized Schröder number, Discrete Math. 218 (2000) 121-130.
  • Kremer, Darla and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
  • Laradji, A. and Umar, A. Asymptotic results for semigroups of order-preserving partial transformations. Comm. Algebra 34 (2006), 1071-1075. - Abdullahi Umar, Oct 11 2008
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • L. Shapiro and A. B. Stephens, Bootstrap percolation, the Schröder numbers and the N-kings problem, SIAM J. Discrete Math., Vol. 4 (1991), pp. 275-280.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178 and also Problems 6.39 and 6.40.
  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

Apart from leading term, twice A001003 (the small Schroeder numbers). Cf. A025240.
Sequences A085403, A086456, A103137, A112478 are essentially the same sequence.
Main diagonal of A033877.
Row sums of A104219. Bisections give A138462, A138463.
Row sums of A175124.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021

Programs

  • GAP
    Concatenation([1],List([1..25],n->(1/n)*Sum([0..n],k->2^k*Binomial(n,k)*Binomial(n,k-1)))); # Muniru A Asiru, Nov 29 2018
  • Haskell
    a006318 n = a004148_list !! n
    a006318_list = 1 : f [1] where
       f xs = y : f (y : xs) where
         y = head xs + sum (zipWith (*) xs $ reverse xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Maple
    Order := 24: solve(series((y-y^2)/(1+y),y)=x,y); # then A(x)=y(x)/x
    BB:=(-1-z-sqrt(1-6*z+z^2))/2: BBser:=series(BB, z=0, 24): seq(coeff(BBser, z, n), n=1..23); # Zerinvary Lajos, Apr 10 2007
    A006318_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 2*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A006318_list(22); # Peter Luschny, May 19 2011
    A006318 := n-> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): seq(A006318(n), n=0..22); # Johannes W. Meijer, Jul 14 2013
    seq(simplify(hypergeom([-n,n+1],[2],-1)), n=0..100); # Robert Israel, Mar 23 2015
  • Mathematica
    a[0] = 1; a[n_Integer] := a[n] = a[n - 1] + Sum[a[k]*a[n - 1 - k], {k, 0, n - 1}]; Array[a[#] &, 30]
    InverseSeries[Series[(y - y^2)/(1 + y), {y, 0, 24}], x] (* then A(x) = y(x)/x *) (* Len Smiley, Apr 11 2000 *)
    CoefficientList[Series[(1 - x - (1 - 6x + x^2)^(1/2))/(2x), {x, 0, 30}], x] (* Harvey P. Dale, May 01 2011 *)
    a[ n_] := 2 Hypergeometric2F1[ -n + 1, n + 2, 2, -1]; (* Michael Somos, Apr 03 2013 *)
    a[ n_] := With[{m = If[ n < 0, -1 - n, n]}, SeriesCoefficient[(1 - x - Sqrt[ 1 - 6 x + x^2])/(2 x), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
    Table[-(GegenbauerC[n+1, -1/2, 3] + KroneckerDelta[n])/2, {n, 0, 30}] (* Vladimir Reshetnikov, Nov 12 2016 *)
    CoefficientList[Nest[1+x(#+#^2)&, 1+O[x], 20], x] (* Oliver Seipel, Dec 21 2024 *)
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( (1 - x - sqrt( 1 - 6*x + x^2 + x^2 * O(x^n))) / 2, n+1)}; /* Michael Somos, Apr 03 2013 */
    
  • PARI
    {a(n) = if( n<1, 1, sum( k=0, n, 2^k * binomial( n, k) * binomial( n, k-1)) / n)};
    
  • Python
    from gmpy2 import divexact
    A006318 = [1, 2]
    for n in range(3,10**3):
        A006318.append(int(divexact(A006318[-1]*(6*n-9)-(n-3)*A006318[-2],n)))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A006318_list(n) :
        D = [0]*(n+1); D[1] = 1
        b = True; h = 1; R = []
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1;
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]);
            b = not b
        return R
    A006318_list(23) # Peter Luschny, Jun 02 2012
    

Formula

G.f.: (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x).
a(n) = 2*hypergeom([-n+1, n+2], [2], -1). - Vladeta Jovovic, Apr 24 2003
For n > 0, a(n) = (1/n)*Sum_{k = 0..n} 2^k*C(n, k)*C(n, k-1). - Benoit Cloitre, May 10 2003
The g.f. satisfies (1 - x)*A(x) - x*A(x)^2 = 1. - Ralf Stephan, Jun 30 2003
For the asymptotic behavior, see A001003 (remembering that A006318 = 2*A001003). - N. J. A. Sloane, Apr 10 2011
From Philippe Deléham, Nov 28 2003: (Start)
Row sums of A088617 and A060693.
a(n) = Sum_{k = 0..n} C(n+k, n)*C(n, k)/(k+1). (End)
With offset 1: a(1) = 1, a(n) = a(n-1) + Sum_{i = 1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k = 0..n} A000108(k)*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
a(n) = Sum_{k = 0..n} A011117(n, k). - Philippe Deléham, Jul 10 2004
a(n) = (CentralDelannoy(n+1) - 3 * CentralDelannoy(n))/(2*n) = (-CentralDelannoy(n+1) + 6 * CentralDelannoy(n) - CentralDelannoy(n-1))/2 for n >= 1, where CentralDelannoy is A001850. - David Callan, Aug 16 2006
From Abdullahi Umar, Oct 11 2008: (Start)
A123164(n+1) - A123164(n) = (2*n+1)*a(n) (n >= 0).
and 2*A123164(n) = (n+1)*a(n) - (n-1)*a(n-1) (n > 0). (End)
Define the general Delannoy numbers d(i, j) as in A001850. Then a(k) = d(2*k, k) - d(2*k, k-1) and a(0) = 1, Sum_{j=0..n} ((-1)^j * (d(n, j) + d(n-1, j-1)) * a(n-j)) = 0. - Peter E John, Oct 19 2006
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is (essentially) Phi([2]). - Gary W. Adamson, Oct 27 2008
G.f.: 1/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x.... (continued fraction). - Paul Barry, Dec 08 2008
G.f.: 1/(1 - x - x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, Jan 29 2009
a(n) ~ ((3 + 2*sqrt(2))^n)/(n*sqrt(2*Pi*n)*sqrt(3*sqrt(2) - 4))*(1-(9*sqrt(2) + 24)/(32*n) + ...). - G. Nemes (nemesgery(AT)gmail.com), Jan 25 2009
Logarithmic derivative yields A002003. - Paul D. Hanna, Oct 25 2010
a(n) = the upper left term in M^(n+1), M = the production matrix:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
4, 4, 2, 1, 1, 0, ...
8, 8, 8, 2, 1, 1, ...
... - Gary W. Adamson, Jul 08 2011
a(n) is the sum of top row terms in Q^n, Q = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 0, ...
1, 1, 1, 2, 0, 0, ...
1, 1, 1, 1, 2, 0, ...
1, 1, 1, 1, 1, 2, ...
... - Gary W. Adamson, Aug 23 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x) = (1 - 3*x - sqrt(1 - 6*x + x^2))/(2*x) an o.g.f. (nulling the n = 0 term) for A006318, G(x) = x/(2 + 3*x + x^2) is the compositional inverse.
Consequently, with H(x) = 1/ (dG(x)/dx) = (2 + 3*x + x^2)^2 / (2 - x^2),
a(n) = (1/n!)*[(H(x)*d/dx)^n] x evaluated at x = 0, i.e.,
F(x) = exp[x*H(u)*d/du] u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
a(n-1) = number of ordered complete binary trees with n leaves having k internal vertices colored black, the remaining n - 1 - k internal vertices colored white, and such that each vertex and its rightmost child have different colors ([Drake, Example 1.6.7]). For a refinement of this sequence see A175124. - Peter Bala, Sep 29 2011
D-finite with recurrence: (n-2)*a(n-2) - 3*(2*n-1)*a(n-1) + (n+1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
G.f.: A(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) = (1 - G(0))/x; G(k) = 1 + x - 2*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 04 2012
G.f.: A(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) = (G(0) - 1)/x; G(k) = 1 - x/(1 - 2/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jan 04 2012
a(n+1) = a(n) + Sum_{k=0..n} a(k)*(n-k). - Reinhard Zumkeller, Nov 13 2012
G.f.: 1/Q(0) where Q(k) = 1 + k*(1 - x) - x - x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(-1-n) = a(n). - Michael Somos, Apr 03 2013
G.f.: 1/x - 1 - U(0)/x, where U(k) = 1 - x - x/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: (2 - 2*x - G(0))/(4*x), where G(k) = 1 + 1/( 1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) = 1/(n + 1) * (Sum_{j=0..n} C(n+j, j)*C(n+j+1, j+1)*(Sum_{k=0..n-j} (-1)^k*C(n+j+k, k))). - Graham H. Hawkes, Feb 15 2015
a(n) = hypergeom([-n, n+1], [2], -1). - Peter Luschny, Mar 23 2015
a(n) = sqrt(2) * LegendreP(n, -1, 3) where LegendreP is the associated Legendre function of the first kind (in Maple's notation). - Robert Israel, Mar 23 2015
G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} binomial(j,k)*A(x)^k. - Ilya Gutkovskiy, Apr 11 2019
From Peter Bala, May 13 2024: (Start)
a(n) = 2 * Sum_{k = 0..floor(n/2)} binomial(n, 2*k)*binomial(2*n-2*k, n)/(n-2*k+1) for n >= 1.
a(n) = Integral_{x = 0..1} Legendre_P(n, 2*x+1) dx. (End)
G.f. A(x) = 1/(1 - x) * c(x/(1-x)^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Aug 29 2024

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A001003 Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.

Original entry on oeis.org

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871
Offset: 0

Views

Author

Keywords

Comments

If you are looking for the Schroeder numbers (a.k.a. large Schroder numbers, or big Schroeder numbers), see A006318.
Yang & Jiang (2021) call these the small 2-Schroeder numbers. - N. J. A. Sloane, Mar 28 2021
There are two schools of thought about the index for the first term. I prefer the indexing a(0) = a(1) = 1, a(2) = 3, a(3) = 11, etc.
a(n) is the number of ways to insert parentheses in a string of n+1 symbols. The parentheses must be balanced but there is no restriction on the number of pairs of parentheses. The number of letters inside a pair of parentheses must be at least 2. Parentheses enclosing the whole string are ignored.
Also length of list produced by a variant of the Catalan producing iteration: replace each integer k with the list 0,1,..,k,k+1,k,...,1,0 and get the length a(n) of the resulting (flattened) list after n iterations. - Wouter Meeussen, Nov 11 2001
Stanley gives several other interpretations for these numbers.
Number of Schroeder paths of semilength n (i.e., lattice paths from (0,0) to (2n,0), with steps H=(2,0), U=(1,1) and D(1,-1) and not going below the x-axis) with no peaks at level 1. Example: a(2)=3 because among the six Schroeder paths of semilength two HH, UHD, UUDD, HUD, UDH and UDUD, only the first three have no peaks at level 1. - Emeric Deutsch, Dec 27 2003
a(n+1) is the number of Dyck n-paths in which the interior vertices of the ascents are colored white or black. - David Callan, Mar 14 2004
Number of possible schedules for n time slots in the first-come first-served (FCFS) printer policy.
Also row sums of A086810, A033282, A126216. - Philippe Deléham, May 09 2004
a(n+1) is the number of pairs (u,v) of same-length compositions of n, 0's allowed in u but not in v and u dominates v (meaning u_1 >= v_1, u_1 + u_2 >= v_1 + v_2 and so on). For example, with n=2, a(3) counts (2,2), (1+1,1+1), (2+0,1+1). - David Callan, Jul 20 2005
The big Schroeder number (A006318) is the number of Schroeder paths from (0,0) to (n,n) (subdiagonal paths with steps (1,0) (0,1) and (1,1)). These paths fall in two classes: those with steps on the main diagonal and those without. These two classes are equinumerous and the number of paths in either class is the little Schroeder number a(n) (half the big Schroeder number). - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
With offset 0, a(n) = number of (colored) Motzkin (n-1)-paths with each upstep U getting one of 2 colors and each flatstep F getting one of 3 colors. Example. With their colors immediately following upsteps/flatsteps, a(2) = 3 counts F1, F2, F3 and a(3)=11 counts U1D, U2D, F1F1, F1F2, F1F3, F2F1, F2F2, F2F3, F3F1, F3F2, F3F3. - David Callan, Aug 16 2006
Shifts left when INVERT transform applied twice. - Alois P. Heinz, Apr 01 2009
Number of increasing tableaux of shape (n,n). An increasing tableau is a semistandard tableaux with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 3 because of the three tableaux (12)(34), (13)(24), (12)(23). - Oliver Pechenik, Apr 22 2014
Number of ordered trees with no vertex of outdegree 1 and having n+1 leaves (called sometimes Schröder trees). - Emeric Deutsch, Dec 13 2014
Number of dissections of a convex (n+2)-gon by nonintersecting diagonals. Example: a(2)=3 because for a square ABCD we have (i) no diagonal, (ii) dissection with diagonal AC, and (iii) dissection with diagonal BD. - Emeric Deutsch, Dec 13 2014
The little Schroeder numbers are the moments of the Marchenko-Pastur law for the case c=2 (although the moment m0 is 1/2 instead of 1): 1/2, 1, 3, 11, 45, 197, 903, ... - Jose-Javier Martinez, Apr 07 2015
Number of generalized Motzkin paths with no level steps at height 0, from (0,0) to (2n,0), and consisting of steps U=(1,1), D=(1,-1) and H2=(2,0). For example, for n=3, we have the 11 paths: UDUDUD, UUDDUD, UDUUDD, UH2DUD, UDUH2D, UH2H2D, UUDUDD, UUUDDD, UUH2DD, UUDH2D, UH2UDD. - José Luis Ramírez Ramírez, Apr 20 2015
REVERT transform of A225883. - Vladimir Reshetnikov, Oct 25 2015
Total number of (nonempty) faces of all dimensions in the associahedron K_{n+1} of dimension n-1. For example, K_4 (a pentagon) includes 5 vertices and 5 edges together with K_4 itself (5 + 5 + 1 = 11), while K_5 includes 14 vertices, 21 edges and 9 faces together with K_5 itself (14 + 21 + 9 + 1 = 45). - Noam Zeilberger, Sep 17 2018
a(n) is the number of interval posets of permutations with n minimal elements that have exactly two realizers, up to a shift by 1 in a(4). See M. Bouvel, L. Cioni, B. Izart, Theorem 17 page 13. - Mathilde Bouvel, Oct 21 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_1 = 1, (ii) u_i <= i for all i, (iii) the nonzero u_i are weakly increasing. For example, a(2) = 3 counts 10, 11, 12, and a(3) = 11 counts 100, 101, 102, 103, 110, 111, 112, 113, 120, 122, 123. See link below. - David Callan, Dec 19 2021
a(n) is the number of parking functions of size n avoiding the patterns 132 and 213. - Lara Pudwell, Apr 10 2023
a(n+1) is the number of Schroeder paths from (0,0) to (2n,0) in which level steps at height 0 come in 2 colors. - Alexander Burstein, Jul 23 2023

Examples

			G.f. = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 197*x^5 + 903*x^6 + 4279*x^7 + ...
a(2) = 3: abc, a(bc), (ab)c; a(3) = 11: abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d, ((ab)c)d.
Sum over partitions formula: a(3) = 2*a(0)*a(2) + 1*a(1)^2 + 3*(a(0)^2)*a(1) + 1*a(0)^4 = 6 + 1 + 3 + 1 = 11.
a(4) = 45 since the top row of Q^3 = (11, 14, 12, 8, 0, 0, 0, ...); (11 + 14 + 12 + 8) = 45.
		

References

  • D. Arques and A. Giorgetti, Une bijection géometrique entre une famille d'hypercartes et une famille de polygones énumérées par la série de Schroeder, Discrete Math., 217 (2000), 17-32.
  • Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
  • N. Bernasconi et al., On properties of random dissections and triangulations, Combinatorica, 30 (6) (2010), 627-654.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 618.
  • Peter J. Cameron, Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155, also p. 179, line -9. - N. J. A. Sloane, Apr 18 2014
  • C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 57.
  • D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
  • Emeric Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
  • Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
  • Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations. Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (2). - N. J. A. Sloane, May 18 2014
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • P. Flajolet and M. Noy, Analytic combinatorics of non-crossing permutations, Discrete Math., 204 (1999), 203-229, Section 3.1.
  • D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
  • Wolfgang Gatterbauer and Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, February 2017, Volume 26, Issue 1, pp. 5-30; DOI 10.1007/s00778-016-0434-5
  • Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
  • D. Gouyou-Beauchamps and B. Vauquelin, Deux propriétés combinatoires des nombres de Schroeder, Theor. Inform. Appl., 22 (1988), 361-388.
  • N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
  • M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, various sections (e.g. p. 534 of 2nd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, (p. 539 of 3rd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.6, Problem 66, p. 479.
  • J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1979), 253-270.
  • Ana Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
  • T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
  • L. Ozsvart, Counting ordered graphs that avoid certain subgraphs, Discr. Math., 339 (2016), 1871-1877.
  • R. C. Read, On general dissections of a polygon, Aequat. Mathem. 18 (1978) 370-388, Table 6
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 168.
  • E. Schroeder, Vier combinatorische Probleme, Zeit. f. Math. Phys., 15 (1870), 361-376.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178; see page 239, Exercise 6.39b.
  • H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 198.
  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

See A000081, A000108, A001190, A001699, for other ways to count parentheses.
Row sums of A033282, A033877, A086810, A126216.
Right-hand column 1 of convolution triangle A011117.
Column 1 of A336573. Column 0 of A104219.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, this sequence, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Cf. A006318 (Schroeder numbers).

Programs

  • Haskell
    a001003 = last . a144944_row  -- Reinhard Zumkeller, May 11 2013
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!( (1+x -Sqrt(1-6*x+x^2) )/(4*x) )); // G. C. Greubel, Oct 27 2024
  • Maple
    t1 := (1/(4*x))*(1+x-sqrt(1-6*x+x^2)); series(t1,x,40);
    invtr:= proc(p) local b; b:= proc(n) option remember; local i; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: a:='a': f:= (invtr@@2)(a): a:= proc(n) if n<0 then 1 else f(n-1) fi end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009
    # Computes n -> [a[0],a[1],..,a[n]]
    A001003_list := proc(n) local j,a,w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a,list) end: A001003_list(100); # Peter Luschny, May 17 2011
  • Mathematica
    Table[Length[Flatten[Nest[ #/.a_Integer:> Join[Range[0, a + 1], Range[a, 0, -1]] &, {0}, n]]], {n, 0, 10}]; Sch[ 0 ] = Sch[ 1 ] = 1; Sch[ n_Integer ] := Sch[ n ] = (3(2n - 1)Sch[ n - 1 ] - (n - 2)Sch[ n - 2 ])/(n + 1); Array[ Sch, 24, 0]
    (* Second program: *)
    a[n_] := Hypergeometric2F1[-n + 1, n + 2, 2, -1]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 09 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 6 x + x^2]) / (4 x), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    Table[(KroneckerDelta[n] - GegenbauerC[n+1, -1/2, 3])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    a[n_] := -LegendreP[n, -1, 2, 3] I / Sqrt[2]; a[0] = 1;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 16 2019 *)
    a[1]:=1; a[2]:=1; a[n_]:=a[n] = a[n-1]+2 Sum[a[k] a[n-k], {k,2,n-1}]; Map[a, Range[24]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
    CoefficientList[InverseSeries[Series[x/(Series[(1 - x)/(1 - 2  x), {x, 0, 24}]), {x, 0, 24}]]/x, x] (* Mats Granvik, Jun 30 2025 *)
  • PARI
    {a(n) = if( n<1, n==0, sum( k=0, n, 2^k * binomial(n, k) * binomial(n, k-1) ) / (2*n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoef( exp(3*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoef( serreverse( (x - 2*x^2) / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    N=30; x='x+O('x^N); Vec( (1+x-(1-6*x+x^2)^(1/2))/(4*x) ) \\ Hugo Pfoertner, Nov 19 2018
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)]
    def A001003_list(n):
        a = [0 for i in range(n)]
        a[0] = 1
        for w in range(1, n):
            s = 0
            for j in range(1, w):
                s += a[j]*a[w-j-1]
            a[w] = a[w-1]+2*s
        return a
    # Peter Luschny, May 17 2011
    
  • Python
    from gmpy2 import divexact
    A001003 = [1, 1]
    for n in range(3,10**3):
        A001003.append(divexact(A001003[-1]*(6*n-9)-(n-3)*A001003[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A001003_list(n) :
        D = [0]*(n+1); D[1] = 1/2
        b = True; h = 2; R = [1]
        for i in range(2*n-2) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1;
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]);
            b = not b
        return R
    A001003_list(24) # Peter Luschny, Jun 02 2012
    

Formula

D-finite with recurrence: (n+1) * a(n) = (6*n-3) * a(n-1) - (n-2) * a(n-2) if n>1. a(0) = a(1) = 1.
a(n) = 3*a(n-1) + 2*A065096(n-2) (n>2). If g(x) = 1 + 3*x + 11*x^2 + 45*x^3 + ... + a(n)*x^n + ..., then g(x) = 1 + 3(x*g(x)) + 2(x*g(x))^2, g(x)^2 = 1 + 6*x + 31*x^2 + 156*x^3 + ... + A065096(n)*x^n + ... - Paul D. Hanna, Jun 10 2002
a(n+1) = -a(n) + 2*Sum_{k=1..n} a(k)*a(n+1-k). - Philippe Deléham, Jan 27 2004
a(n-2) = (1/(n-1))*Sum_{k=0..n-3} binomial(n-1,k+1)*binomial(n-3,k)*2^(n-3-k) for n >= 3 [G. Polya, Elemente de Math., 12 (1957), p. 115.] - N. J. A. Sloane, Jun 13 2015
G.f.: (1 + x - sqrt(1 - 6*x + x^2) )/(4*x) = 2/(1 + x + sqrt(1 - 6*x + x^2)).
a(n) ~ W*(3+sqrt(8))^n*n^(-3/2) where W = (1/4)*sqrt((sqrt(18)-4)/Pi) [See Knuth I, p. 534, or Perez. Note that the formula on line 3, page 475 of Flajolet and Sedgewick seems to be wrong - it has to be multiplied by 2^(1/4).] - N. J. A. Sloane, Apr 10 2011
The correct asymptotic for this sequence is a(n) ~ W*(3+sqrt(8))^n*n^(-3/2), where W = (1+sqrt(2))/(2*2^(3/4)*sqrt(Pi)) = 0.404947065905750651736243... Result in book by D. Knuth (p. 539 of 3rd edition, exercise 12) is for sequence b(n), but a(n) = b(n+1)/2. Therefore is asymptotic a(n) ~ b(n) * (3+sqrt(8))/2. - Vaclav Kotesovec, Sep 09 2012
The Hankel transform of this sequence gives A006125 = 1, 1, 2, 8, 64, 1024, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n+1) = Sum_{k=0..floor((n-1)/2)} 2^k * 3^(n-1-2k) * binomial(n-1, 2k) * Catalan(k). This formula counts colored Dyck paths by the same parameter by which Touchard's identity counts ordinary Dyck paths: number of DDUs (U=up step, D=down step). See also Gouyou-Beauchamps reference. - David Callan, Mar 14 2004
From Paul Barry, May 24 2005: (Start)
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k)*C(2n-k, n)*(-1)^k*2^(n-k) [with offset 0].
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k+1)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} (1/(k+1))*C(n, k)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} A088617(n, k)*(-1)^(n-k)*2^k [with offset 0]. (End)
E.g.f. of a(n+1) is exp(3*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
Reversion of (x-2*x^2)/(1-x) is g.f. offset 1.
For n>=1, a(n) = Sum_{k=0..n} 2^k*N(n, k) where N(n, k) = (1/n)*C(n, k)*C(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003 [This formula counts colored Dyck paths by number of peaks, which is easy to see because the Narayana numbers count Dyck paths by number of peaks and the number of peaks determines the number of interior ascent vertices.]
a(n) = Sum_{k=0..n} A088617(n, k)*2^k*(-1)^(n-k). - Philippe Deléham, Jan 21 2004
For n > 0, a(n) = (1/(n+1)) * Sum_{k = 0 .. n-1} binomial(2*n-k, n) * binomial(n-1, k). This formula counts colored Dyck paths (as above) by number of white vertices. - David Callan, Mar 14 2004
a(n-1) = (d^(n-1)/dx^(n-1))((1-x)/(1-2*x))^n/n!|_{x=0}. (For a proof see the comment on the unsigned row sums of triangle A111785.)
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (1/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k, k-1).
a(n) = hypergeom([1-n, n+2], [2], -1), n>=1. (End)
a(n) = hypergeom([1-n, -n], [2], 2) for n>=0. - Peter Luschny, Sep 22 2014
a(m+n+1) = Sum_{k>=0} A110440(m, k)*A110440(n, k)*2^k = A110440(m+n, 0). - Philippe Deléham, Sep 14 2005
Sum over partitions formula (reference Schroeder paper p. 362, eq. (1) II). Number the partitions of n according to Abramowitz-Stegun pp. 831-832 (see reference under A105805) with k=1..p(n)= A000041(n). For n>=1: a(n-1) = Sum_{k=2..p(n)} A048996(n,k)*a(1)^e(k, 1)*a(1)^e(k, 2)*...*a(n-2)^e(k, n-1) if the k-th partition of n in the mentioned order is written as (1^e(k, 1), 2^e(k, 2), ..., (n-1)e(k, n-1)). Note that the first (k=1) partition (n^1) has to be omitted. - Wolfdieter Lang, Aug 23 2005
Starting (1, 3, 11, 45, ...), = row sums of triangle A126216 = A001263 * [1, 2, 4, 8, 16, ...]. - Gary W. Adamson, Nov 30 2007
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1+x-2x/(1+x-2x/(1+x-2x/(1+x-2x/(1-.... (continued fraction).
G.f.: 1/(1-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction).
G.f.: 1/(1-x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1-... (continued fraction). (End)
G.f.: 1 / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / ... )))). - Michael Somos, May 19 2013
a(n) = (LegendreP(n+1,3)-3*LegendreP(n,3))/(4*n) for n>0. - Mark van Hoeij, Jul 12 2010 [This formula is mentioned in S.-J. Kettle's 1982 letter - see link. N. J. A. Sloane, Jun 13 2015]
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, where M is the production matrix:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q is the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 1, 1, 2, 0, ...
1, 1, 1, 1, 2, ...
... (End)
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t+3*t^2+4*t^3+...)), an o.g.f. for A003480, then for A001003 a(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. (Cf. A086810.) - Tom Copeland, Sep 06 2011
A006318(n) = 2*a(n) if n>0. - Michael Somos, Mar 31 2007
BINOMIAL transform is A118376 with offset 0. REVERT transform is A153881. INVERT transform is A006318. INVERT transform of A114710. HANKEL transform is A139685. PSUM transform is A104858. - Michael Somos, May 19 2013
G.f.: 1 + x/(Q(0) - x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = A144944(n,n) = A186826(n,0). - Reinhard Zumkeller, May 11 2013
a(n)=(-1)^n*LegendreP(n,-1,-3)/sqrt(2), n > 0, LegendreP(n,a,b) is the Legendre function. - Karol A. Penson, Jul 06 2013
Integral representation as n-th moment of a positive weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2, is the discrete (atomic) part, and W_c(x) = sqrt(8-(x-3)^2)/(4*Pi*x) is the continuous part of W(x) defined on (3 sqrt(8),3+sqrt(8)): a(n) = int( x^n*W_a(x), x=-eps..eps ) + int( x^n*W_c(x), x = 3-sqrt(8)..3+sqrt(8) ), for any eps>0, n>=0. W_c(x) is unimodal, of bounded variation and W_c(3-sqrt(8)) = W_c(3+sqrt(8)) = 0. Note that the position of the Dirac peak (x=0) lies outside support of W_c(x). - Karol A. Penson and Wojciech Mlotkowski, Aug 05 2013
G.f.: 1 + x/G(x) with G(x) = 1 - 3*x - 2*x^2/G(x) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022

A001187 Number of connected labeled graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816, 35641657548953344, 73354596206766622208, 301272202649664088951808, 2471648811030443735290891264, 40527680937730480234609755344896, 1328578958335783201008338986845427712
Offset: 0

Views

Author

Keywords

Comments

"Based on experimental data obtained using the software LattE [14] and the Online Encyclopedia of Integer Sequences [19], we make the following conjecture: Conjecture 11. For j >= 2, Vol(C_j ) is equal to the number of labeled connected graphs on j - 1 vertices." [Beck et al., 2011]
For n > 1, a(n) is log-convex. Furthermore, a(n+1)*a(n-1) ~ 2*a(n)*a(n). - Ran Pan, Oct 28 2015
a(n) is also the number of tournaments on {1,...,n} for which 1 is reachable from every vertex. - Don Knuth, Aug 06 2020

Examples

			E.g.f.: 1 + x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! + 26704*x^6/6! + 1866256*x^7/7! + 251548592*x^8/8! + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 398-402.
  • D. G. Cantor, personal communication.
  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 518.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.1.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 78.

Crossrefs

Logarithmic transform of A006125 (labeled graphs).
Row sums of triangle A062734.
Cf. A053549.

Programs

  • Magma
    m:=30;
    f:= func< x | 1+Log( (&+[2^Binomial(n,2)*x^n/Factorial(n): n in [0..m+3]]) ) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022
    
  • Maple
    t1 := 1+log( add(2^binomial(n,2)*x^n/n!,n=0..30)): t2 := series(t1,x,30): A001187 := n->n!*coeff(t2,x,n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 26 2013
    # Alternative:
    a := proc(n) option remember;
        2^((n-1)*n/2) - add(binomial(n-1, k)*2^((k-n+1)*(k-n+2)/2)*a(k+1), k=0..n-2)
    end:
    seq(a(n), n=0..16); # Peter Luschny, Feb 21 2023
  • Mathematica
    m:=20; g = Sum[2^Binomial[n, 2] x^n/n!, {n,0,m}]; Range[0,m]! CoefficientList[Series[Log[g] +1, {x,0,m}], x] (* Geoffrey Critzer, Nov 12 2011 *)
    a[n_]:= a[n]= If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]* 2^((n-k)*(n-k-1)/2)*a[k], {k,1,n-1}]/n]; Table[a[n], {n,0,20}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Log[ Sum[2^(k(k-1)/2) x^k/k!, {k,0, n}]], {x, 0, n}]]; (* Michael Somos, Jul 11 2019 *)
  • PARI
    {a(n) = if(n<0, 0, n! * polcoeff( 1 + log( sum( k=0, n, 2^binomial(k, 2) * x^k / k!, x * O(x^n))), n))}; /* Michael Somos, Jun 12 2000 */
    
  • Python
    from functools import lru_cache
    import gmpy2
    @lru_cache(None)
    def A001187(n):
      if n == 0:
        return 1
      s = gmpy2.mpz(0)
      for k in range(1, n):
        s += k * gmpy2.comb(n, k) * 2**((n - k)*(n - k - 1)//2) * A001187(k)
      return 2**(n*(n-1)//2) - s // n # John Reimer Morales, Aug 15 2025
  • Sage
    @cached_function
    def A001187(n):
        if n == 0: return 1
        return 2^(n*(n-1)/2)- sum(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*A001187(k) for k in (1..n-1))/n
    [A001187(n) for n in (0..15)] # Peter Luschny, Jan 17 2016
    

Formula

n * 2^binomial(n, 2) = Sum_{k=1..n} binomial(n, k) * k * a(k) * 2^binomial(n-k, 2).
E.g.f.: 1 + log(Sum_{n>=0} 2^binomial(n, 2) * x^n / n!). - Michael Somos, Jun 12 2000

A006129 a(0), a(1), a(2), ... satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.

Original entry on oeis.org

1, 0, 1, 4, 41, 768, 27449, 1887284, 252522481, 66376424160, 34509011894545, 35645504882731588, 73356937912127722841, 301275024444053951967648, 2471655539737552842139838345, 40527712706903544101000417059892, 1328579255614092968399503598175745633
Offset: 0

Views

Author

Keywords

Comments

Also labeled graphs on n unisolated nodes (inverse binomial transform of A006125). - Vladeta Jovovic, Apr 09 2000
Also the number of edge covers of the complete graph K_n. - Eric W. Weisstein, Mar 30 2017

Examples

			2^binomial(n,2) = 1 + binomial(n,2) + 4*binomial(n,3) + 41*binomial(n,4) + 768*binomial(n,5) + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054548.
Cf. A322661 (if loops allowed), A086193 (directed edges), A002494 (unlabeled).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          2^binomial(n, 2) - add(a(k)*binomial(n,k), k=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2012
  • Mathematica
    a = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 20}]; Range[0, 20]! CoefficientList[Series[a/Exp[x], {x, 0, 20}], x] (* Geoffrey Critzer, Oct 21 2011 *)
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2015 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n,(-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)), ", ")) \\ G. C. Greubel, Mar 30 2017
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def a(n): return 1 if n==0 else 2**binomial(n, 2) - sum(a(k)*binomial(n, k) for k in range(n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2).
E.g.f.: A(x)/exp(x) where A(x) = Sum_{n>=0} 2^C(n,2) x^n/n!. - Geoffrey Critzer, Oct 21 2011
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 04 2015

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025
Showing 1-10 of 361 results. Next