cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: M. Farrokhi D. G.

M. Farrokhi D. G.'s wiki page.

M. Farrokhi D. G. has authored 19 sequences. Here are the ten most recent ones:

A367195 Primes p such that (2^(p-1)*(p+1) - 1) / p is prime.

Original entry on oeis.org

3, 5, 7, 11, 19, 29, 41, 61, 137, 181, 293, 11171
Offset: 1

Author

M. Farrokhi D. G., Nov 09 2023

Keywords

Comments

2^(p-1)*(p+1) - 1 is the p-th term of the Cunningham chain p = n_1, n_2, ..., where n_{i+1} = 2*n_i+1 for i >= 1.

Extensions

a(12) from Michael S. Branicky, Nov 09 2023

A366219 Smallest positive integer whose smallest coprime divisor shift is n.

Original entry on oeis.org

1, 3, 91, 325, 2093, 1001, 12025, 1045, 4945, 6391, 189, 455, 245, 11825, 128843, 368809, 273, 1295, 14495, 37961, 252263, 91375, 595, 13013, 46189, 104951, 63875, 136345, 42237, 22253, 192647, 18655, 8225, 194545, 200629, 192907, 27625, 1911, 464783, 27797
Offset: 0

Author

M. Farrokhi D. G., Oct 05 2023

Keywords

Comments

A nonnegative number s is a coprime divisor shift of n if GCD(d + s, n) = 1 for all divisors d of n. The coprime divisor shift of n is the infimum of the set of all nonnegative coprime divisor shifts of n.
Conjecture. Every positive integer s is the coprime divisor shift of a positive integer.

Examples

			a(0) = 1 for GCD(1 + 0, 1) = 1.
a(1) = 3 for GCD(1 + 1, 3) = GCD(3 + 1, 3) = 1 but GCD(1 + 1, 2) > 1.
a(2) = 91 for GCD(d + 2, 91) = 1 for all divisors d = 1, 7, 13, 91 of 91, GCD(13 + 1, 91) > 1, and 91 is the smallest number with this property.
		

Crossrefs

Programs

  • PARI
    isds(k,s)={fordiv(k,d,if(gcd(d+s, k)<>1, return(0))); 1}
    findds(k)={for(s=0, k-1, if(isds(k,s), return(s))); -1}
    a(n)={for(k=1, oo, if(isds(k,n) && findds(k)==n, return(k)))} \\ Andrew Howroyd, Oct 05 2023

A366330 Minimal numbers (with respect to division) with no coprime divisor shift.

Original entry on oeis.org

2, 15, 33, 51, 69, 87, 123, 141, 159, 177, 213, 249, 267, 303, 321, 339, 393, 411, 447, 501, 519, 537, 573, 591, 665, 681, 699, 717, 753, 771, 789, 807, 819, 843, 879, 933, 951, 1015, 1041, 1059, 1077, 1149, 1167, 1203, 1235, 1257, 1293, 1329, 1347, 1383
Offset: 1

Author

M. Farrokhi D. G., Oct 07 2023

Keywords

Comments

A number k has a coprime divisor shift s if GCD(d + s, n) = 1 for all divisors d of k.
A number k has a coprime divisor shift iff it is not divisible by any number in the sequence.
If k has no coprime divisor shift, then so is any multiple of k.

References

  • a(1) = 2 for GCD(2 + 0, 2) > 1 and GCD(1 + 1, 2) > 1.
  • a(2) = 15 for GCD(3 + 0, 15) > 1, GCD(5 + 1, 15) > 1, GCD(1 + 2, 15) > 1, and any odd number between 2 and 15 has a coprime divisor shift.

Crossrefs

A366251 Numbers with a coprime divisor shift.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 47, 49, 53, 55, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 125, 127, 129, 131, 133, 137, 139, 143, 145
Offset: 1

Author

M. Farrokhi D. G., Oct 05 2023

Keywords

Comments

A number k has a coprime divisor shift s if GCD(d + s, k) = 1 for all divisors d of k.
If k is in the sequence, then all divisors of k are in the sequence too.
From David A. Corneth, Oct 06 2023: (Start)
As a consequence of the above, if some m is not in the sequence then any multiple of m is not in the sequence either. So all terms are odd as 2 is not in the sequence.
To see if k is a term we can do the following:
- Check whether k is even; if so then k is not in the sequence.
- Make a list of the divisors of k. Let tau(k) be the number of divisors of k. Then for each prime p <= tau(k) if the number of residues mod p of the divisors of k is equal to p then k is not in the sequence. Otherwise by the Chinese Remainder Theorem we can find a number s such that gcd(d + s, n) = 1 for all d.
So every odd prime is a term. (End)

Examples

			1 is a term since GCD(1 + 0, 1) = 1.
2 is not a term since GCD(1 + s, 2) > 1 or GCD(2 + s, 2) > 1 for all nonnegative integers s.
3 is a term since GCD(1 + 1, 3) = GCD(3 + 1, 3) = 1.
		

Crossrefs

Programs

  • GAP
    CoprimeDivisorShift := function(n)
    local shift, divisors;
    shift := 0;
    if not IsPrimeInt(n) and First(PrimeDivisors(n), p -> CoprimeDivisorShift(n / p) = infinity) <> fail then
    	shift := infinity;
    fi;
    if shift < infinity then
    	divisors := DivisorsInt(n);
    	while shift < n and First(divisors, d -> GcdInt(d + shift, n) > 1) <> fail do
    		shift := shift + 1;
    	od;
    	if shift = n then
    		shift := infinity;
    	fi;
    fi;
    return shift;
    end;
  • Maple
    aList := proc(len) local isds, findds;
    isds := (k, s) -> andmap(d -> igcd(d + s, k) = 1, NumberTheory:-Divisors(k));
    findds := k -> ormap(s -> isds(k, s), [seq(1..k)]);
    select(k -> findds(k), [seq(1..len)]) end:
    aList(133);  # Peter Luschny, Oct 06 2023
    # More efficient, after David A. Corneth:
    isa := proc(n) local d, p, t; p := 3;
    if irem(n, 2) = 0 then return false fi;
    d := NumberTheory:-Divisors(n);
    while p < nops(d) do
       {seq(irem(t, p), t = d)};
       if nops(%) = p then return false fi;
       p := nextprime(p);
    od: true end:
    aList := len -> select(isa, [seq(1..len)]):
    aList(145);  # Peter Luschny, Oct 07 2023
  • Mathematica
    isa[n_] := Module[{d, p, t}, p = 3; If[Mod[n, 2] == 0, Return[False]]; d = Divisors[n]; While[p < Length[d], If[Length[Union@Table[Mod[t, p], {t, d}]] == p, Return[False]]; p = NextPrime[p]]; True];
    aList[len_] := Select[Range[len], isa];
    aList[145] (* Jean-François Alcover, Oct 27 2023, after Peter Luschny *)
  • PARI
    isds(k,s)={fordiv(k, d, if(gcd(d+s, k)<>1, return(0))); 1}
    findds(k)={for(s=1, k, if(isds(k,s), return(s))); 0}
    select(k->findds(k), [1..150]) \\ Andrew Howroyd, Oct 05 2023
    
  • PARI
    is(n) = {
    	if(!bitand(n, 1), return(0));
    	my(d = divisors(n));
    	forprime(p = 3, #d,
    		if(#Set(d % p) == p,
    			return(0)
    		)
    	); 1	
    } \\ David A. Corneth, Oct 06 2023
    

A348358 Primes which are not the concatenation of smaller primes (in base 10 and allowing leading 0's).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 127, 131, 139, 149, 151, 157, 163, 167, 179, 181, 191, 199, 239, 251, 263, 269, 281, 349, 401, 409, 419, 421, 431, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
Offset: 1

Author

M. Farrokhi D. G., Oct 14 2021

Keywords

Comments

This is the sequence of numbers that are neither a product of smaller primes nor a concatenation of smaller primes (in base 10).
This sequence differs from A238647. The prime 227 is in A238647 but not in this sequence for it is the concatenation of primes 2, 2, 7 (in base 10).
Conjecture. If p > 7 is a prime, then there exists a base b such that p in base b is the concatenation of smaller primes in base b.

Examples

			The prime 127 is in the sequence because the only expressions of 127 as concatenation of smaller numbers are 1 U 2 U 7, 1 U 27, and 12 U 7 (in base 10) but 1 and 12 are not primes.
The prime 271 is not in the sequence because it is the concatenation of primes 2 and 71 (in base 10).
The prime 307 is not in the sequence because it is the concatenation of primes 3 and 07 (in base 10).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@100,Union[And@@@PrimeQ[FromDigits/@#&/@Union@Select[Flatten[Permutations/@Subsets[Most@Rest@Subsequences[d=IntegerDigits@#]],1],Flatten@#==d&]]]=={False}||Length@d==1&] (* Giorgos Kalogeropoulos, Oct 15 2021 *)
  • Python
    from sympy import isprime, primerange
    def cond(n): # n is not a concatenation of smaller primes
        if n%10 in {4, 6, 8}: return True
        d = str(n)
        for i in range(1, len(d)):
            if isprime(int(d[:i])):
                 if isprime(int(d[i:])) or not cond(int(d[i:])):
                     return False
        return True
    def aupto(lim): return [p for p in primerange(2, lim+1) if cond(p)]
    print(aupto(490)) # Michael S. Branicky, Oct 15 2021

A337706 Possible values for the product of the orders of all elements of a finite group.

Original entry on oeis.org

1, 2, 8, 9, 32, 72, 128, 512, 625, 648, 2048, 6561, 8192, 20000, 32768, 41472, 52488, 117649, 131072, 524288, 2654208, 3359232, 4782969, 8388608, 12500000, 15059072, 33554432, 134217728, 214990848, 536870912, 2147483648, 2448880128
Offset: 1

Author

M. Farrokhi D. G., Sep 16 2020

Keywords

Comments

The product of the orders of all elements of a finite group G is denoted by P(G).
P(A X B) = P(A)^|B|P(B)^|A| for finite groups A and B of coprime orders.
P(G) < P(C_n) for every noncyclic finite group G of order n.

Examples

			P(C_6) = 1*2*3*3*6*6 = 648.
		

Programs

  • GAP
    Product(List(G, Order))

A337705 Possible sums of orders of elements of finite groups.

Original entry on oeis.org

1, 3, 7, 11, 13, 15, 19, 21, 23, 25, 27, 31, 33, 39, 43, 45, 47, 49, 55, 57, 59, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 95, 97, 99, 101, 103, 105, 111, 113, 115, 119, 121, 125, 127, 129, 133, 135, 143, 147, 151, 153, 157, 159, 161, 163
Offset: 1

Author

M. Farrokhi D. G., Sep 16 2020

Keywords

Comments

The sum of the orders of all elements of a finite group G is denoted by psi(G).
psi(A X B) = psi(A)*psi(B) for finite groups A and B of coprime orders.
psi(G) <= 7/11 psi(C_n) < psi(C_n) for every noncyclic finite group G of order n.
psi(G) < 1/(p - 1) psi(C_n) for every noncyclic finite group G of order n, where p the smallest prime divisor of n.
Conjecture: If S is a simple group and G is a soluble group satisfying |S|=|G|, then psi(S) < psi(G).

Examples

			psi(C_6) = 1 + 2 + 3 + 3 + 6 + 6 = 21.
		

Programs

  • GAP
    Sum(List(G, Order));

A336526 a(n) is the least k > 1 such that A031121(n) = F(k*m)/F(m) for some m.

Original entry on oeis.org

2, 3, 2, 2, 5, 2, 3, 2, 7, 3, 2, 4, 2, 9, 2, 3, 5, 4, 2, 11, 3, 2, 6, 2, 13, 5, 2, 3, 4, 7, 2, 15, 3, 2, 8, 6, 4, 2, 17, 2, 3, 5, 9, 2, 19, 7, 3, 2, 4, 10, 2, 21, 5, 2, 3, 6, 11, 8, 4, 2, 23, 3, 2, 12, 2, 25, 9, 2, 3, 4, 5, 7, 13, 6, 2, 27, 3, 2
Offset: 1

Author

M. Farrokhi D. G., Jul 25 2020

Keywords

Crossrefs

A333357 Integers that cannot be expressed as the ratio of 2 Fibonacci numbers.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80
Offset: 1

Author

M. Farrokhi D. G., Jul 24 2020

Keywords

Comments

Any product of m > 1 Fibonacci numbers > 1 belongs to the sequence except for 4, 18, 48, and 72.

Crossrefs

Cf. A000045.
Complement of A031121.

Programs

  • GAP
    l := Filtered(Set(List(Cartesian([1..21], [1..21]), x -> Fibonacci(x[1] * x[2])/Fibonacci(x[1]))), x -> x < 10000);;
    Filtered([1..10000], x ->  not x in l);

A336191 Numbers k of the form k = ab (the decimal concatenation of a and b) such that phi(ab) = a*b + 1.

Original entry on oeis.org

57, 195, 319, 5595, 11709, 77097, 114765, 1313667, 1348559, 4752465, 10219099, 11031119, 185573199, 2918945715, 3165616929, 12233666703, 16996664613, 18052811909, 20650199699, 38081370319, 58943659521, 195823876095, 236323024041, 242687655369, 342764528277, 677924155713
Offset: 1

Author

M. Farrokhi D. G., Jul 11 2020

Keywords

Comments

Is the sequence infinite?

Examples

			phi(57) = 5 * 7 + 1
phi(195) = 1 * 95 + 1 = 19 * 5 + 1
phi(319) = 31 * 9 + 1
phi(5595) = 5 * 595 + 1
phi(11709) = 11 * 709 + 1
phi(77097) = 7 * 7097 + 1
phi(114765) = 11 * 4765 + 1
phi(1313667) = 1313 * 667 + 1
phi(1348559) = 134855 * 9 + 1
phi(4752465) = 47 * 52465 + 1
phi(10219099) = 1021 * 9099 + 1
phi(11031119) = 1103111 * 9 + 1
phi(185573199) = 185 * 573199 + 1
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n] - 1]]; Select[Range[10, 10^5], seqQ] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    isok(m) = {my(tm=eulerphi(m)-1, d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););} \\ Michel Marcus, Jul 11 2020

Extensions

Missing terms 1348559 & 4752465, and a(12) from Amiram Eldar, Jul 11 2020
More terms from Giovanni Resta, Jul 13 2020