cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336192 Numbers of the form ab such that phi(ab) = a*b - 1 where ab is the concatenation of a and b.

Original entry on oeis.org

1385, 1397, 15663, 19835, 37037, 238903, 719719, 1983035, 4337785, 5946445, 8099989, 15276063, 64438507, 97919791, 238639687, 325776657, 1926629941, 3228792383, 4387457627, 4652069941, 9801019901, 44898935609, 68135795923, 115563539473, 129898064149, 390084197561
Offset: 1

Views

Author

M. Farrokhi D. G., Jul 11 2020

Keywords

Comments

Is the sequence infinite?
If phi(ab) = a*b - 1 then ab is a composite number.

Examples

			phi(1385) = 13 * 85 - 1
phi(1397) = 13 * 97 - 1
phi(15663) = 15 * 663 - 1
phi(19835) = 19 * 835 - 1
phi(37037) = 3703 * 7 - 1
phi(238903) = 23 * 8903 - 1
phi(719719) = 719 * 719 - 1
phi(1983035) = 19 * 83035 - 1
phi(4337785) = 4337 * 785 - 1
phi(5946445) = 5 * 946445 - 1
phi(8099989) = 809 * 9989 - 1
phi(15276063) = 1527 * 6063 - 1
phi(64438507) = 6443 * 8507 - 1
phi(97919791) = 9791 * 9791 - 1
phi(238639687) = 23 * 8639687 - 1
phi(325776657) = 32577 * 6657 - 1
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n] + 1]]; Select[Range[10, 10^5], seqQ] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    isok(m) = {my(tm=eulerphi(m)+1, d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););} \\ Michel Marcus, Jul 11 2020

Extensions

Missing terms 1983035 & 5946445 from Amiram Eldar, Jul 11 2020
More terms from Giovanni Resta, Jul 13 2020

A336237 Numbers of the form ab such that phi(ab) = a*b where ab is the concatenation of a and b.

Original entry on oeis.org

24, 26, 87, 154, 165, 209, 250, 364, 440, 448, 644, 875, 1240, 1252, 1269, 1320, 1434, 1632, 1640, 1768, 1996, 2440, 2480, 2500, 2656, 2840, 2842, 4040, 4400, 5240, 6040, 6499, 6544, 7240, 7640, 8250, 8360, 8420, 8440, 8727, 8832, 8875, 9640, 10040, 10344, 10840
Offset: 1

Views

Author

Michel Marcus, Jul 13 2020

Keywords

Comments

From Marius A. Burtea, Aug 04 2020: (Start)
The sequence is infinite because it contains the family of terms 25 * 10^k, k >= 1. Indeed, phi(25 * 10^k) = phi(2^k * 5^(k + 2)) = 2^(k-1) * 4 * 5^(k + 1) = 2 * (5 * 10^k).
More generally, if 10 * m is a term then 10^k * m, k >= 1, is a term.
For example, for k = 2, let 10 * m = a_b and phi(10 * m) = a * b. If m = 2^u * 5^v * s, with u, v >= 0 and gcd(10, s) = 1, then phi(100 * m) = phi(100 * 2^u * 5^v * s) = phi(2^(u + 2) * 5^(v + 2) * s) = 2^(u + 1) * 5^(v + 1) * 4 * phi(s) = 10 * 2^u * 5^v * 4 * phi(s) = 10 * phi(2^(u + 1) * 5^(v + 1) * s) = 10 * phi(10 * m) = 10 * a_b = a_(10*b). (End)

Examples

			2*4=8 and phi(24)=8 so 24 is a term.
		

Crossrefs

Programs

  • Magma
    a:=[]; for n in [1..11000] do s:=#Intseq(n); if exists(c){i:i in [1..s-1]| ((n mod 10^i)*(n div 10^i)) eq EulerPhi(n)} then Append(~a,n); end if; end for; a; // Marius A. Burtea, Aug 04 2020
  • Mathematica
    seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n]]]; Select[Range[10, 10^4], seqQ] (* Amiram Eldar, Jul 13 2020 *)
  • PARI
    isok(m) = {my(tm=eulerphi(m), d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););}
    
Showing 1-2 of 2 results.