cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337523 Numbers of the form ab such that uphi(ab) = a*b where ab is the concatenation of a and b.

Original entry on oeis.org

18, 26, 68, 87, 154, 165, 209, 572, 846, 1434, 4840, 5476, 5828, 5936, 6499, 6572, 7772, 8540, 8727, 10088, 10864, 11772, 12867, 15088, 20099, 20584, 20881, 21672, 22440, 27348, 29748, 29920, 30576, 32390, 35640, 36580, 37200, 37449, 38430, 39600, 40548, 42984
Offset: 1

Views

Author

Marius A. Burtea, Aug 30 2020

Keywords

Examples

			For k = 18, uphi(18) = 8 = 1 * 8.
For k = 68, uphi(68) = 48 = 6 * 8.
For k = 87, uphi(87) = 56 = 8 * 7.
For k = 154, uphi(154) = 60 = 15 * 4.
		

Crossrefs

Cf. A047994 (uphi), A336237.

Programs

  • Magma
    uphi:=func; [k:k in [10..43000]| exists(c){i:i in [1..#Intseq(k)-1]| (k mod 10^i)*(k div 10^i) ne 0 and (k mod 10^i)*(k div 10^i) eq uphi(k)}];
  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], uphi[n]]]; Select[Range[10, 43000], seqQ] (* Amiram Eldar, Aug 30 2020 *)
Showing 1-1 of 1 results.