cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186338 Expansion of 1/(1-2x/(1-2x/(1-x/(1-2x/(1-2x/(1-x/(1-2x/(1-... (continued fraction).

Original entry on oeis.org

1, 2, 8, 36, 172, 860, 4460, 23820, 130268, 726236, 4112972, 23599724, 136906748, 801671996, 4732110828, 28128179276, 168222049052, 1011509012636, 6111445499532, 37084090264364, 225899543897916, 1380918157453052, 8468524718133804, 52085281291575052
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Crossrefs

Hankel transform is A186339.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1-10*x+25*x^2-16*x^3]+3*x-1)/(2*x*(2*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • Maxima
    a(n):=sum(sum(binomial(j+1, i)*binomial(2*j-i, j-i)*binomial(n-j+i-1, n-j), i, 0, j)/(j+1)*2^(n-j), j, 0, n); /* Vladimir Kruchinin, Jan 25 2020 */

Formula

G.f.: (sqrt(1-10x+25x^2-16x^3)+3x-1)/(2x(2x-1)).
Conjecture: (n+1)*a(n) +3*(1-4n)*a(n-1) +15*(3n-4)*a(n-2) +6*(26-11n)*a(n-3) +16*(2n-7)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) = Sum_{k, 0<=k<=n} A091866(n,k)*2^k. - Philippe Deléham, Nov 27 2011
a(n) ~ sqrt(7*sqrt(17)-17)*((9+sqrt(17))/2)^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
From Vladimir Kruchinin, Jan 25 2020: (Start)
a(n) = Sum_{j=0..n} Sum_{i=0..j} C(j+1, i)*C(2*j-i, j-i)*C(n-j+i-1,n-j) /(j+1)*2^(n-j).
a(n) = Sum_{i=0..n-1} a(i)*(2^(n-i-1)+a(n-i-1)). (End)

A186340 a(n) = 2^A001840(n).

Original entry on oeis.org

1, 2, 4, 8, 32, 128, 512, 4096, 32768, 262144, 4194304, 67108864, 1073741824, 34359738368, 1099511627776, 35184372088832, 2251799813685248, 144115188075855872, 9223372036854775808, 1180591620717411303424, 151115727451828646838272
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

A factor in the Hankel transform A186339 of A186338.
a(n)*a(n-4) = 2*a(n-1)*a(n-3) = a(n-1)*a(n-3) + c(n)*a(n-2)^2, where c(3*n+2) = 2, c(3*n) = c(3*n+1) = 1 for all n in Z. - Michael Somos, Oct 19 2018

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 32*x^4 + 128*x^5 + 512*x^6 + ... - _Michael Somos_, Oct 19 2018
		

Crossrefs

Cf. A058937.

Programs

  • Mathematica
    a[ n_] := 2^Quotient[ Binomial[n + 2, 2], 3]; (* Michael Somos, Oct 19 2018 *)
  • PARI
    {a(n) = 2^(binomial(n+2, 2)\3)}; /* Michael Somos, Oct 19 2018 */

Formula

a(n)=2^floor((n+1)(n+2)/6).
Showing 1-2 of 2 results.