cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186341 a(n)=sum{k=0..floor(n/2), binomial(n-k,k)*A186338(k)}.

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 95, 237, 667, 1765, 4943, 13505, 37967, 105837, 299675, 847253, 2417903, 6909409, 19866303, 57253165, 165728475, 480938693, 1400391247, 4087481409, 11963060527, 35089773869, 103157489499, 303856951925, 896755068783, 2651120922081, 7850714948511
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is A134751.

Programs

  • Mathematica
    CoefficientList[Series[(1-x-3x^2-Sqrt[(1-3x-7x^2+19x^3+15x^4-25x^5-16x^6)/(1-x)])/(2x^2(1-x-2x^2)),{x,0,40}],x]  (* Harvey P. Dale, Mar 04 2011 *)

Formula

G.f.: 1/(1-x-2x^2/(1-2x^2/(1-x-x^2/(1-2x^2/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-... (continued fraction).
G.f.: (1-x-3x^2-sqrt((1-3x-7x^2+19x^3+15x^4-25x^5-16x^6)/(1-x)))/(2x^2(1-x-2x^2)).
Conjecture: (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(-n+3)*a(n-2) +(38*n-59)*a(n-3) +(-22*n+41)*a(n-4) +4*(-22*n+81)*a(n-5) +3*(19*n-79)*a(n-6) +3*(29*n-164)*a(n-7) +2*(-17*n+98)*a(n-8) +16*(-2*n+15)*a(n-9)=0. - R. J. Mathar, Oct 08 2016

A186339 a(n)=A006125(n+1)*2^A001840(n).

Original entry on oeis.org

1, 4, 32, 512, 32768, 4194304, 1073741824, 1099511627776, 2251799813685248, 9223372036854775808, 151115727451828646838272, 4951760157141521099596496896, 324518553658426726783156020576256, 85070591730234615865843651857942052864
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform of A186338.

Formula

a(n)=2^binomial(n+1,2)*2^floor((n+1)(n+2)/6).

A186340 a(n) = 2^A001840(n).

Original entry on oeis.org

1, 2, 4, 8, 32, 128, 512, 4096, 32768, 262144, 4194304, 67108864, 1073741824, 34359738368, 1099511627776, 35184372088832, 2251799813685248, 144115188075855872, 9223372036854775808, 1180591620717411303424, 151115727451828646838272
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

A factor in the Hankel transform A186339 of A186338.
a(n)*a(n-4) = 2*a(n-1)*a(n-3) = a(n-1)*a(n-3) + c(n)*a(n-2)^2, where c(3*n+2) = 2, c(3*n) = c(3*n+1) = 1 for all n in Z. - Michael Somos, Oct 19 2018

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 32*x^4 + 128*x^5 + 512*x^6 + ... - _Michael Somos_, Oct 19 2018
		

Crossrefs

Cf. A058937.

Programs

  • Mathematica
    a[ n_] := 2^Quotient[ Binomial[n + 2, 2], 3]; (* Michael Somos, Oct 19 2018 *)
  • PARI
    {a(n) = 2^(binomial(n+2, 2)\3)}; /* Michael Somos, Oct 19 2018 */

Formula

a(n)=2^floor((n+1)(n+2)/6).
Showing 1-3 of 3 results.