cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mathilde Bouvel

Mathilde Bouvel's wiki page.

Mathilde Bouvel has authored 10 sequences.

A373456 Number of tree interval posets of permutations of size n, considered up to isomorphism.

Original entry on oeis.org

1, 1, 1, 3, 6, 14, 32, 79, 192, 488, 1244, 3240, 8497, 22561, 60309, 162541, 440598, 1201377, 3291426, 9058464, 25027797, 69401101, 193071153, 538724060, 1507288378, 4227824974, 11886150870, 33488522111, 94539554742, 267383598840, 757539956852, 2149698586706, 6109515731611
Offset: 1

Author

Mathilde Bouvel, Jun 06 2024

Keywords

Comments

See Remark 24 in [Bouvel-Cioni-Izart].

References

  • Bridget E. Tenner. Interval Posets of Permutations. Order, 39(3):523-536, 2022.

Crossrefs

For the same posets but not considered up to isomorphism, see A054515.
For interval posets that are not necessarily trees, see A373455 (for posets also considered up to isomorphism) and A348479 (otherwise).

Formula

Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.2597 and r approximately 2.9784. See M. Bouvel, L. Cioni, B. Izart (Remark 24).

A373455 Number of interval posets of permutations of size n, considered up to isomorphism.

Original entry on oeis.org

1, 1, 2, 6, 15, 43, 124, 379, 1172, 3730, 12023, 39388, 130377, 436066, 1470271, 4994083, 17069343, 58669677, 202648664, 703064353, 2448871526, 8560428736, 30021944259, 105602286616, 372469127865, 1317027839250, 4667702488376, 16578315095909
Offset: 1

Author

Mathilde Bouvel, Jun 06 2024

Keywords

Comments

See Remark 21 in [Bouvel-Cioni-Izart].

References

  • Bridget E. Tenner. Interval Posets of Permutations. Order, 39(3):523-536, 2022.

Crossrefs

For the same posets but not considered up to isomorphism, see A348479.
For the same posets which are in addition trees, see A373456.

Formula

Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.1964 and r approximately 3.7545. See M. Bouvel, L. Cioni, B. Izart (Remark 21).

A348479 Number of interval posets of permutations with n minimal elements.

Original entry on oeis.org

1, 1, 3, 12, 52, 240, 1160, 5795, 29681, 155025, 822563, 4421458, 24025518, 131759106, 728330062, 4053823980, 22699853940, 127790656040, 722835069984, 4106096464006, 23414579166050, 133984343279790, 769124367124594, 4427878983496972, 25559244203741228
Offset: 1

Author

Mathilde Bouvel, Oct 21 2021

Keywords

Crossrefs

For interval posets which are in addition trees, see A054515.

Programs

  • Mathematica
    Join[{1},Table[Sum[Sum[Binomial[n+i-1,i]Binomial[i,k]Binomial[n-2k-2,i-1],{k,0,Min[i,(n-i-1)/2]}],{i,n-1}]/n,{n,2,25}]] (* Stefano Spezia, Oct 23 2021 *)
  • PARI
    a(n) = if (n==1, 1, (1/n) * sum(i=1, n-1, sum(k=0, min(i,(n-i-1)/2), binomial(n+i-1,i)* binomial(i,k)*binomial(n-2*k-2,i-1)))); \\ Michel Marcus, Oct 21 2021

Formula

a(n) = (1/n) * Sum_{i=1..(n-1)} Sum_{k=0..Min(i,(n-i-1)/2)} binomial(n+i-1,i)* binomial(i,k)*binomial(n-2k-2,i-1) if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 18).
G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies the equation A(z) = z + (A(z)^2 + A(z)^4)/(1-A(z)). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (1) page 14).
Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.0622 and r approximately 6.1403. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 19).
D-finite with recurrence 177*n*(n-1)*(n-2) *(1884*n-6797)*a(n) -(n-1) *(n-2) *(2079652*n^2-10492117*n+10802220) *a(n-1) +6*(n-2) *(98404*n^3-611787*n^2+893503*n+124240) *a(n-2) +2*(-1206916*n^4+13262653*n^3-52943063*n^2+90096428*n-54243072) *a(n-3) +(-16564*n^4+1171171*n^3-12487565*n^2+47878166*n-62441016) *a(n-4) +3 *(3*n-14) *(n-5) *(388*n-1861) *(3*n-16)*a(n-5)=0. - R. J. Mathar, Nov 04 2021

A333005 Number of unrooted level-2 phylogenetic networks with n+1 labeled leaves, when multiple (i.e., parallel) edges are not allowed.

Original entry on oeis.org

1, 6, 135, 5052, 264270, 17765100, 1459311840, 141655066560, 15864853936680, 2013630348265200, 285637924882787400, 44782566595855149600, 7689608275439667376800, 1435181273959520911824000, 289287240571642427530416000, 62630090604946453360419648000
Offset: 1

Author

Mathilde Bouvel, Mar 13 2020

Keywords

Examples

			a(3) = 135 is the number of unrooted level-2 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # (See Links)
    # second Maple program:
    f:= z-> 1/(1-(3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)):
    a:= n-> n!*coeff(series(RootOf(U=z*f(U), U), z, n+1), z, n):
    seq(a(n), n=1..23);  # Alois P. Heinz, Apr 01 2020
  • Mathematica
    nmax = 16;
    Module[{U, f, z},
       U[_] = 0;
       f[z_] := 1/(1 - (3*z^5 - 16*z^4 + 32*z^3 - 30*z^2 + 12*z)/(4*(1 - z)^4));
       Do[U[z_] = z*f[U[z]] + O[z]^(nmax+1) // Normal, {nmax}];
       Rest[CoefficientList[U[z], z]*Range[0, nmax]!]] (* Jean-François Alcover, Jan 31 2025 *)

Formula

E.g.f. satisfies U(z) = z*f(U(z)) where f(z) = 1 / (1 - (3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)) [from Bouvel, Gambette, and Mansouri]. - Sean A. Irvine, Apr 01 2020

A333006 Number of rooted level-2 phylogenetic networks with n labeled leaves, when multiple (i.e., parallel) edges are not allowed.

Original entry on oeis.org

1, 18, 1143, 120078, 17643570, 3332111850, 769027554540, 209740414484160, 66001012966991340, 23537700706536311400, 9381525451337593738800, 4132780832455382525556600, 1993954501042287608709284400, 1045675186072945581517653088800
Offset: 1

Author

Mathilde Bouvel, Mar 13 2020

Keywords

Examples

			a(3) = 1143 is the number of rooted level-2 phylogenetic networks with 3 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # (See Links)
    # second Maple program:
    f:= z-> 1/(1-(36*z-102*z^2+159*z^3-148*z^4+81*z^5-24*z^6+3*z^7)
             /(4*(1-z)^6)):
    a:= n-> n!*coeff(series(RootOf(L=z*f(L), L), z, n+1), z, n):
    seq(a(n), n=1..17);  # Alois P. Heinz, Apr 01 2020

Formula

E.g.f. satisfies L(z) = z*f(L(z)) where f(z) = 1 / (1 - (36*z-102*z^2+159*z^3-148*z^4+81*z^5-24*z^6+3*z^7)/(4*(1-z)^6)) [from Bouvel, Gambette, and Mansouri]. - Sean A. Irvine, Apr 01 2020

A328126 Number of rooted level-2 phylogenetic networks with n labeled leaves, when multiple (i.e. parallel) edges are allowed.

Original entry on oeis.org

1, 24, 1935, 259098, 48547410, 11693494530, 3442245242940, 1197493950509640, 480665307600153900, 218657025956206794600, 111169169621733787779600, 62469471023839610046855000, 38446561750101105716524609200, 25719207873623040944564642044800, 18581469164514130166868945471102000
Offset: 1

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(3) = 1935 is the number of rooted level-2 phylogenetic networks with 3 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 7.

Extensions

Name clarified by Mathilde Bouvel, Feb 03 2020

A328123 Number of unrooted level-2 phylogenetic networks with (n+1) labeled leaves, when multiple (i.e. parallel) edges are allowed.

Original entry on oeis.org

1, 9, 282, 14697, 1071750, 100467405, 11509922970, 1558302613245, 243426592473750, 43095781327975425, 8527098853816839450, 1864790504534293823025, 446647359698685492697350, 116281255808439040209815925, 32694665144001284972518220250
Offset: 1

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(3) = 282 is the number of unrooted level-2 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 6.

Extensions

Name clarified by Mathilde Bouvel, Feb 03 2020

A328122 Number of rooted level-1 phylogenetic networks with n labeled leaves.

Original entry on oeis.org

1, 3, 36, 723, 20280, 730755, 32171580, 1673573895, 100442870640, 6831585584775, 519288366989700, 43626178967384475, 4014060030471090600, 401443860155706643275, 43359414126089609047500, 5030039291029886037279375, 623762332206315636458124000, 82340968923184527676400655375, 11528273478697179256689693556500
Offset: 1

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(4) = 723 is the number of rooted level-1 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation and a closed form for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 5.

A328121 Number of unrooted level-1 phylogenetic networks (also called galled trees) with (n+1) labeled leaves.

Original entry on oeis.org

1, 2, 15, 192, 3450, 79740, 2252880, 75227040, 2898481320, 126570502800, 6177380517000, 333231084648000, 19687828831070400, 1264341183311606400, 87691200344603856000, 6532556443068591936000, 520205544912884502672000, 44098092640676115673632000, 3964782594938523231457584000
Offset: 1

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(4) = 192 is the number of unrooted level-1 phylogenetic networks with 5 labeled leaves
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Semple and Steele provide a summation formula for a(n) (see their Theorem 4).
Bouvel, Gambette and Mansouri provide (among other additional results) an equation for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 4.

A281784 Number of permutations of size n avoiding the three vincular patterns 2-41-3, 3-14-2 and 3-41-2.

Original entry on oeis.org

1, 2, 6, 21, 82, 346, 1547, 7236, 35090, 175268, 897273, 4690392, 24961300, 134917123, 739213795, 4099067786, 22973964976, 129998127216, 741951610676, 4267733183951, 24722711348105, 144147076572858, 845460619537567, 4986014094568416, 29553202933497989, 175988793822561947, 1052569034807964425, 6320797287983675428, 38100643422386086309, 230476496238489596293, 1398812189780917895946, 8516159717810715750712, 51999675864641162206960, 318388601290603235387353, 1954555567303560704554767, 12028490623505389875097231, 74197729371621673254309374, 458706129189543207063584184, 2841808950641424998337843123
Offset: 1

Author

Mathilde Bouvel, Mar 01 2017

Keywords

Comments

a(n) is the number of permutations of size n that are both Baxter and twisted Baxter.
a(n) is also the number of excursions in the positive quarter-plane, using n steps, and with step (multi-)set {(-1,0),(0,-1),(1,-1),(1,0),(0,1),(0,0),(0,0)}.

Examples

			For n=4, there are a(4)=21 permutations that avoid 2-41-3, 3-14-2 and 3-41-2 (all permutations of size 4 except 2413, 3142 and 3412).
		

Crossrefs

Baxter and twisted Baxter permutations are both enumerated by the Baxter numbers A001181.

Programs

  • Maple
    S:=x*y*z:
    s[1]:=1:
    for en from 2 to 200 do
    x*y/(1-y)*(subs(y=1,S))-x/(1-y)*S+x*z*S+x*y*z/(1-z)*(subs(z=1,S))-x*y*z/(1-z)*S;
    S:=normal(%):
    s[en]:=subs(x=1,z=1,y=1,S);
    od:
    # Veronica Guerrini, Mar 01 2017

Formula

The generating function for a(n) is A(x;1,1) where A(x;y,z) satisfies A(x;y,z) = x*y*z + (x/(1-y))*(y*A(x;1,z) - A(x;y,z)) + x*z*A(x;y,z) + (x*y*z/(1-z))*(A(x;y,1) - A(x;y,z)).
Consequently, neither A(x;1,1) nor A(x;y,z) are D-finite (see preprint of Bouvel et al.).