cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A328121 Number of unrooted level-1 phylogenetic networks (also called galled trees) with (n+1) labeled leaves.

Original entry on oeis.org

1, 2, 15, 192, 3450, 79740, 2252880, 75227040, 2898481320, 126570502800, 6177380517000, 333231084648000, 19687828831070400, 1264341183311606400, 87691200344603856000, 6532556443068591936000, 520205544912884502672000, 44098092640676115673632000, 3964782594938523231457584000
Offset: 1

Views

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(4) = 192 is the number of unrooted level-1 phylogenetic networks with 5 labeled leaves
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Semple and Steele provide a summation formula for a(n) (see their Theorem 4).
Bouvel, Gambette and Mansouri provide (among other additional results) an equation for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 4.

A328122 Number of rooted level-1 phylogenetic networks with n labeled leaves.

Original entry on oeis.org

1, 3, 36, 723, 20280, 730755, 32171580, 1673573895, 100442870640, 6831585584775, 519288366989700, 43626178967384475, 4014060030471090600, 401443860155706643275, 43359414126089609047500, 5030039291029886037279375, 623762332206315636458124000, 82340968923184527676400655375, 11528273478697179256689693556500
Offset: 1

Views

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(4) = 723 is the number of rooted level-1 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation and a closed form for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 5.

A328123 Number of unrooted level-2 phylogenetic networks with (n+1) labeled leaves, when multiple (i.e. parallel) edges are allowed.

Original entry on oeis.org

1, 9, 282, 14697, 1071750, 100467405, 11509922970, 1558302613245, 243426592473750, 43095781327975425, 8527098853816839450, 1864790504534293823025, 446647359698685492697350, 116281255808439040209815925, 32694665144001284972518220250
Offset: 1

Views

Author

Mathilde Bouvel, Oct 04 2019

Keywords

Examples

			a(3) = 282 is the number of unrooted level-2 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # see links section

Formula

Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 6.

Extensions

Name clarified by Mathilde Bouvel, Feb 03 2020

A333005 Number of unrooted level-2 phylogenetic networks with n+1 labeled leaves, when multiple (i.e., parallel) edges are not allowed.

Original entry on oeis.org

1, 6, 135, 5052, 264270, 17765100, 1459311840, 141655066560, 15864853936680, 2013630348265200, 285637924882787400, 44782566595855149600, 7689608275439667376800, 1435181273959520911824000, 289287240571642427530416000, 62630090604946453360419648000
Offset: 1

Views

Author

Mathilde Bouvel, Mar 13 2020

Keywords

Examples

			a(3) = 135 is the number of unrooted level-2 phylogenetic networks with 4 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # (See Links)
    # second Maple program:
    f:= z-> 1/(1-(3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)):
    a:= n-> n!*coeff(series(RootOf(U=z*f(U), U), z, n+1), z, n):
    seq(a(n), n=1..23);  # Alois P. Heinz, Apr 01 2020
  • Mathematica
    nmax = 16;
    Module[{U, f, z},
       U[_] = 0;
       f[z_] := 1/(1 - (3*z^5 - 16*z^4 + 32*z^3 - 30*z^2 + 12*z)/(4*(1 - z)^4));
       Do[U[z_] = z*f[U[z]] + O[z]^(nmax+1) // Normal, {nmax}];
       Rest[CoefficientList[U[z], z]*Range[0, nmax]!]] (* Jean-François Alcover, Jan 31 2025 *)

Formula

E.g.f. satisfies U(z) = z*f(U(z)) where f(z) = 1 / (1 - (3*z^5-16*z^4+32*z^3-30*z^2+12*z)/(4*(1-z)^4)) [from Bouvel, Gambette, and Mansouri]. - Sean A. Irvine, Apr 01 2020

A333006 Number of rooted level-2 phylogenetic networks with n labeled leaves, when multiple (i.e., parallel) edges are not allowed.

Original entry on oeis.org

1, 18, 1143, 120078, 17643570, 3332111850, 769027554540, 209740414484160, 66001012966991340, 23537700706536311400, 9381525451337593738800, 4132780832455382525556600, 1993954501042287608709284400, 1045675186072945581517653088800
Offset: 1

Views

Author

Mathilde Bouvel, Mar 13 2020

Keywords

Examples

			a(3) = 1143 is the number of rooted level-2 phylogenetic networks with 3 labeled leaves.
		

Crossrefs

Programs

  • Maple
    # (See Links)
    # second Maple program:
    f:= z-> 1/(1-(36*z-102*z^2+159*z^3-148*z^4+81*z^5-24*z^6+3*z^7)
             /(4*(1-z)^6)):
    a:= n-> n!*coeff(series(RootOf(L=z*f(L), L), z, n+1), z, n):
    seq(a(n), n=1..17);  # Alois P. Heinz, Apr 01 2020

Formula

E.g.f. satisfies L(z) = z*f(L(z)) where f(z) = 1 / (1 - (36*z-102*z^2+159*z^3-148*z^4+81*z^5-24*z^6+3*z^7)/(4*(1-z)^6)) [from Bouvel, Gambette, and Mansouri]. - Sean A. Irvine, Apr 01 2020
Showing 1-5 of 5 results.