cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Fern Gossow

Fern Gossow's wiki page.

Fern Gossow has authored 1 sequences.

A364643 Number of separable elements of the Weyl group of type D_n.

Original entry on oeis.org

1, 2, 4, 22, 102, 474, 2250, 10910, 53886, 270322, 1373970, 7061542, 36639702, 191677386, 1009942362, 5354887470, 28550730222, 152979375842, 823329316386, 4448856020534, 24126427982406, 131270003806906, 716377546590186, 3920251765198782, 21507301494123102, 118269635529457874
Offset: 0

Author

Fern Gossow, Jul 30 2023

Keywords

Crossrefs

Types A_n and B_n/C_n are counted by A006318 (large Schröder numbers).

Programs

  • Mathematica
    b[0] = 1 ; a[0] = 1; a[1] = 2; a[2] = 4;
    b[n_Integer] :=
     b[n] = b[n - 1] + Sum[b[k]*b[n - 1 - k], {k, 0, n - 1}];
    a[n_Integer] :=
     a[n] = a[n - 1] + b[n - 2] + 2*b[n - 1] +
    Sum[b[k]*a[n - k - 1], {k, 0, n - 3}]; Table[a[n], {n, 0, 30}] (* Andy Huchala, Aug 01 2023 *)
  • Sage
    prec = 10
    R. = PowerSeriesRing(QQ,prec)
    f = (3 - 4*x - 5*x^2 - (1 - x)*sqrt(1 - 6*x + x^2))/(1 - x + sqrt(1 - 6*x + x^2))
    list(f) # Andy Huchala, Jul 31 2023

Formula

a(n) = a(n-1) + A006318(n-2) + 2*A006318(n-1) + Sum_{k=0..n-3} A006318(k)*a(n-k-1) (n >= 3).
G.f.: (3 - 4*x - 5*x^2 - (1 - x)*sqrt(1 - 6*x + x^2))/(1 - x + sqrt(1 - 6*x + x^2)).
a(n) = 2*A006318(n) - 3*A006318(n-1) - 2*A006318(n-2) (n >= 3) - Fern Gossow, Dec 05 2023
D-finite with recurrence +2*(n+1)*a(n) +3*(-5*n+3)*a(n-1) +(18*n-43)*a(n-2) +3*(3*n-14)*a(n-3) +2*(-n+6)*a(n-4)=0. - R. J. Mathar, Mar 25 2024