Lara Pudwell has authored 188 sequences. Here are the ten most recent ones:
A362744
Number of parking functions of size n avoiding the patterns 312 and 321.
Original entry on oeis.org
1, 1, 3, 13, 63, 324, 1736, 9589, 54223, 312369, 1826847, 10818156, 64737684, 390877456, 2378312780, 14568360645, 89766137967, 556008951667, 3459976045201, 21621154097573, 135619427912599, 853590782088272, 5389272616262656, 34123058549079788, 216621704634708868
Offset: 0
The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.
When n = 3 there are 5 Dyck paths:
w(NNNEEE) = [3], contributing 1 to the sum;
w(NNENEE) = [2,1], contributing 2+1 = 3 to the sum;
w(NNEENE) = [2,1], contributing 2+1 = 3 to the sum;
w(NENNEE) = [1,2], contributing 1+1 = 2 to the sum;
w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.
Therefore, a(3) = 1+3+3+2+4 = 13.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2
+146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/
(4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
A362741
Number of parking functions of size n avoiding the pattern 123.
Original entry on oeis.org
1, 1, 3, 11, 48, 232, 1207, 6631, 37998, 225182, 1371560, 8546760, 54294880, 350658336, 2297296991, 15239785151, 102218278626, 692361482818, 4730891905450, 32581995322522, 226000929559056, 1577824515023456, 11080975421752488, 78244477268207656
Offset: 0
For n=3 the a(3)=11 parking functions, given in block notation, are {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}; {3},{2},{1}.
-
a:= proc(n) option remember; `if`(n<2, 1, (8*(3*n+4)*(n-1)^2*
a(n-2)+(21*n^3+25*n^2-2*n-8)*a(n-1))/((3*n+1)*(n+2)^2))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 01 2023
A362596
Number of parking functions of size n avoiding the patterns 213 and 321.
Original entry on oeis.org
1, 1, 3, 13, 60, 275, 1238, 5480, 23922, 103267, 441798, 1876366, 7921488, 33275758, 139194812, 580180598, 2410827422, 9990993443, 41308185542, 170439003998, 701953309592, 2886284314298, 11850433719572, 48591008205608, 199002198798980, 814117064956430
Offset: 0
For n=3 the a(3)=13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
-
a(n)=if(n==0, 1, (n^2 - 3*n + 4)*binomial(2*n,n)/(4*(n+1)) + 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
from math import comb
def A362596(n): return ((n*(n-3)+4)*comb(n<<1,n)//(n+1)>>2)+(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
A362595
Number of parking functions of size n avoiding the patterns 132 and 321.
Original entry on oeis.org
1, 1, 3, 12, 52, 229, 1006, 4387, 18978, 81489, 347614, 1474436, 6223328, 26156242, 109528108, 457167817, 1902808318, 7899987577, 32725812958, 135297527872, 558357811048, 2300564293942, 9465003608548, 38889193275142, 159591154157092, 654190748282074
Offset: 0
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
-
A362595 := proc(n)
if n = 0 then
1;
else
(n^2+n+4)*A000108(n)/4 -4^(n-1)/2 ;
end if;
end proc:
seq(A362595(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
-
a(n)=if(n==0, 1, (n^2 + n + 4)*binomial(2*n,n)/(4*(n+1)) - 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
from math import comb
def A362595(n): return ((n*(n+1)+4)*comb(n<<1,n)//(n+1)>>2)-(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
A362597
Number of parking functions of size n avoiding the patterns 213 and 312.
Original entry on oeis.org
1, 1, 3, 12, 54, 259, 1293, 6634, 34716, 184389, 990711, 5372088, 29347794, 161317671, 891313569, 4946324886, 27552980088, 153982124809, 862997075691, 4848839608228, 27304369787694, 154059320699211, 870796075968693, 4929937918315522, 27950989413184404
Offset: 0
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{2},{1}.
-
A362597 := proc(n)
if n = 0 then
1;
else
add(add(binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n,i=0..k),k=0..n-1) ;
end if;
end proc:
seq(A362597(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
-
a(n)={0^n + sum(k=0, n-1, sum(i=0, k, binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n))} \\ Andrew Howroyd, Apr 27 2023
A362563
Triangle T(n, k) read by rows, where T(n, k) is the number of {123,132}-avoiding parking functions of size n with k active sites, for 2 <= k <= n+1.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 3, 5, 8, 8, 8, 14, 17, 20, 16, 24, 40, 49, 50, 48, 32, 75, 123, 147, 151, 136, 112, 64, 243, 393, 465, 473, 432, 352, 256, 128, 808, 1294, 1519, 1540, 1409, 1176, 880, 576, 256, 2742, 4358, 5087, 5144, 4721, 3986, 3088, 2144, 1280, 512
Offset: 1
Triangle T(n, k) begins:
1;
1, 2;
1, 3, 4;
3, 5, 8, 8;
8, 14, 17, 20, 16;
24, 40, 49, 50, 48, 32;
75, 123, 147, 151, 136, 112, 64;
243, 393, 465, 473, 432, 352, 256, 128;
808, 1294, 1519, 1540, 1409, 1176, 880, 576, 256;
2742, 4358, 5087, 5144, 4721, 3986, 3088, 2144, 1280, 512;
...
The eight {123,132}-avoiding parking functions of size 3 are 211, 212, 213, 221, 231, 311, 312, and 321.
In block notation:
211 is {2,3},{1},{} -> NNENEE, which has 2 active sites;
212 is {2},{1, 3},{} -> NENNEE, which has 3 active sites;
213 is {2},{1},{3} -> NENENE, which has 4 active sites;
221 is {3},{1,2},{} -> NENNEE, which has 3 active sites;
231 is {3},{1},{2} -> NENENE, which has 4 active sites;
311 is {2,3},{},{1} -> NNEENE, which has 3 active sites;
312 is {2},{3},{1} -> NENENE, which has 4 active sites;
321 is {3},{2},{1} -> NENENE, which has 4 active sites.
So T(3,2) = 1, T(3,3) = 3, T(3,4) = 4.
A345889
Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the smallest cell covered.
Original entry on oeis.org
1, 4, 16, 76, 436, 2956, 23116, 204556, 2018956, 21977356, 261478156, 3374988556, 46964134156, 700801318156, 11162196262156, 189005910310156, 3390192763174156, 64212742967590156, 1280663747055910156, 26826134832910630156, 588826498721714470156
Offset: 1
A345887
Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the largest cell covered.
Original entry on oeis.org
1, 6, 30, 164, 1030, 7422, 60620, 554248, 5611770, 62353010, 754471432, 9876716940, 139097096918, 2097156230470, 33704296561140, 575219994643472, 10389911153247730, 198019483156015578, 3971390745517868000, 83608226221428800020, 1843561388182505040462
Offset: 1
-
a:= proc(n) a(n):= `if`(n=1, 1, a(n-1)*n^2/(n-1)+n) end:
seq(a(n), n=1..21); # Alois P. Heinz, Jun 28 2021
-
With[{r = Range[21]}, r*Rest@ FoldList[Times @@ {##} + 1 &, 0, r]] (* Michael De Vlieger, Jun 28 2021 *)
-
a(n) = n*sum(k=1, n, n!/k!); \\ Michel Marcus, Jun 29 2021
A339358
Maximum number of copies of a 1234567 permutation pattern in an alternating (or zig-zag) permutation of length n + 11.
Original entry on oeis.org
32, 64, 320, 576, 1696, 2816, 6400, 9984, 19392, 28800, 50304, 71808, 116160, 160512, 244992, 329472, 480480, 631488, 887744, 1144000, 1560416, 1976832, 2629120, 3281408, 4271488, 5261568, 6723840, 8186112, 10294656, 12403200, 15379968, 18356736, 22480800, 26604864
Offset: 1
a(1) = 32. The alternating permutation of length 1+11=12 with the maximum number of copies of 1234567 is 132547698(11)(10)(12). The 32 copies are 12468(10)(12), 12469(10)(12), 12478(10)(12), 12479(10)(12), 12568(10)(12), 12569(10)(12), 12578(10)(12), 12579(10)(12), 13468(10)(12), 13469(10)(12), 13478(10)(12), 13479(10)(12), 13568(10)(12), 13569(10)(12), 13578(10)(12), 13579(10)(12), 12468(11)(12), 12469(11)(12), 12478(11)(12), 12479(11)(12), 12568(11)(12), 12569(11)(12), 12578(11)(12), 12579(11)(12), 13468(11)(12), 13469(11)(12), 13478(11)(12), 13479(11)(12), 13568(11)(12), 13569(11)(12), 13578(11)(12), and 13579(11)(12).
-
A339358 := proc(n)
nhalf := ceil(n/2) ;
if type(n,'even') then
128*binomial(nhalf+6,7)-64*binomial(nhalf+5,6) ;
else
128*binomial(nhalf+4,7)+128*binomial(nhalf+4,6)+32*binomial(nhalf+4,5) ;
end if;
end proc:
seq(A339358(n),n=1..40) ; # R. J. Mathar, Jan 11 2024
A339356
Maximum number of copies of a 123456 permutation pattern in an alternating (or zig-zag) permutation of length n + 9.
Original entry on oeis.org
16, 32, 144, 256, 688, 1120, 2352, 3584, 6496, 9408, 15456, 21504, 32928, 44352, 64416, 84480, 117744, 151008, 203632, 256256, 336336, 416416, 534352, 652288, 821184, 990080, 1226176, 1462272, 1785408, 2108544, 2542656, 2976768, 3550416, 4124064, 4870992, 5617920, 6577648
Offset: 1
a(1) = 16. The alternating permutation of length 1+9=10 with the maximum number of copies of 123456 is 132547698(10). The sixteen copies are 12468(10), 12469(10), 12478(10), 12479(10), 12568(10), 12569(10), 12578(10), 12579(10), 13468(10), 13469(10), 13478(10), 13479(10), 13568(10), 13569(10), 13578(10), and 13579(10).
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society. 67.7 (2020), 994-1001.
- Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
Comments