cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362741 Number of parking functions of size n avoiding the pattern 123.

Original entry on oeis.org

1, 1, 3, 11, 48, 232, 1207, 6631, 37998, 225182, 1371560, 8546760, 54294880, 350658336, 2297296991, 15239785151, 102218278626, 692361482818, 4730891905450, 32581995322522, 226000929559056, 1577824515023456, 11080975421752488, 78244477268207656
Offset: 0

Views

Author

Lara Pudwell, May 01 2023

Keywords

Examples

			For n=3 the a(3)=11 parking functions, given in block notation, are {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}; {3},{2},{1}.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (8*(3*n+4)*(n-1)^2*
          a(n-2)+(21*n^3+25*n^2-2*n-8)*a(n-1))/((3*n+1)*(n+2)^2))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, May 01 2023

Formula

a(n) = Sum_{k=ceiling(n/2)..n} A000108(k)*binomial(n,k)*binomial(k,n-k)/(n-k+1).
a(n) mod 2 = 1 <=> n in { A075427 } U {0}. - Alois P. Heinz, May 01 2023
D-finite with recurrence (n+2)^2*a(n) -n*(3*n+2)*a(n-1) +4*(-9*n^2+17*n-6)*a(n-2) -32*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jan 11 2024
Showing 1-1 of 1 results.