A000958 Number of ordered rooted trees with n edges having root of odd degree.
1, 1, 3, 8, 24, 75, 243, 808, 2742, 9458, 33062, 116868, 417022, 1500159, 5434563, 19808976, 72596742, 267343374, 988779258, 3671302176, 13679542632, 51134644014, 191703766638, 720629997168, 2715610275804, 10256844598900, 38822029694628, 147229736485868
Offset: 1
References
- Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013) - N. J. A. Sloane, Jun 05 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 6, 10.
- Dennis E. Davenport, Louis W. Shapiro, and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers (2020) Vol. 20, Article #A8.
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; http://dx.doi.org/10.4134/CKMS.2013.28.4.827.
- T. Fine, Extrapolation when very little is known about the source, Information and Control 16 (1970), 331-359.
- D. G. Rogers, Similarity relations on finite ordered sets, J. Combin. Theory, A 23 (1977), 88-98. Erratum, loc. cit., 25 (1978), 95-96.
- Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177-186. See Table 2.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-(1+x)*Sqrt(1-4*x))/(2*x*(x+2)) )); // G. C. Greubel, Feb 27 2019 -
Maple
g:=(1-x-(1+x)*sqrt(1-4*x))/2/x/(x+2): gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=1..26); # Emeric Deutsch, Mar 02 2007 A958 := n -> add(binomial(2*n-2*k-2, n-1)*(2*k+1)/n, k=0..floor((n-1)/2)): seq(A958(n), n=1..28); # Johannes W. Meijer, Jul 26 2013 A000958List := proc(m) local A, P, n; A := [1,1]; P := [1,1]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]); A := [op(A), P[-1]] od; A end: A000958List(28); # Peter Luschny, Mar 26 2022 # next Maple program: b:= proc(n) option remember; `if`(n<3, n*(2-n), ((7*n-12)*b(n-1)+(4*n-6)*b(n-2))/(2*n)) end: a:= n-> b(n)+b(n+1): seq(a(n), n=1..32); # Alois P. Heinz, Apr 26 2023
-
Mathematica
nn = 30; Rest[CoefficientList[Series[(1-x-(1+x)*Sqrt[1-4*x])/(2*x*(x+2)), {x, 0, nn}], x]] (* T. D. Noe, May 09 2012 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x-(1+x)*sqrt(1-4*x))/(2*x*(x+2))) \\ G. C. Greubel, Feb 27 2019
-
Python
from itertools import accumulate def A000958_list(size): if size < 1: return [] L, accu = [], [1] for n in range(size-1): accu = list(accumulate(accu+[-accu[-1]])) L.append(accu[n]) return L print(A000958_list(29)) # Peter Luschny, Apr 25 2016
-
Python
from itertools import count, islice def A000958_gen(): # generator of terms yield 1 a, c = 0, 1 for n in count(1): yield (c:=c*((n<<2)+2)//(n+2))+a>>1 a = c-a>>1 A000958_list = list(islice(A000958_gen(),20)) # Chai Wah Wu, Apr 26 2023
-
Sage
a=((1-x-(1+x)*sqrt(1-4*x))/(2*x*(x+2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 27 2019
Formula
G.f.: (1-x-(1+x)*sqrt(1-4*x))/(2*x*(x+2)). - Paul Barry, Jan 26 2007
G.f.: z*C/(1-z^2*C^2), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. - Emeric Deutsch, Mar 02 2007
a(n+1) = Sum_{k=0..floor(n/2)} A039599(n-k,k). - Philippe Deléham, Mar 13 2007
a(n) = (-1/2)^n*(-2 - 5*Sum_{k=1..n-1} (-8)^k*Gamma(1/2+k)*(4/5+k)/(sqrt(Pi)*Gamma(k+3))). - Mark van Hoeij, Nov 11 2009
a(n) + a(n+1) = A135339(n+1). - Philippe Deléham, Dec 02 2009
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = sum of top row terms in M^(n-1), where M = the following infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence 2*(n+1)*a(n) + (-5*n+3)*a(n-1) + (-11*n+21)*a(n-2) + 2 *(-2*n+5)*a(n-3) = 0. - R. J. Mathar, Dec 03 2012
a(n) ~ 5*4^n/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2013
a(n) = Catalan(n-1)*h(n-1) for n>=2 where h(n) = hypergeom([1,3/2,-n/2,(1-n)/2],[1/2,-n,-n+1/2], 1). - Peter Luschny, Apr 25 2016
Comments