cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Volodymyr Mazorchuk

Volodymyr Mazorchuk's wiki page.

Volodymyr Mazorchuk has authored 2 sequences.

A193215 Number of Dyck paths of semilength n having the property that the heights of the first and the last peaks coincide.

Original entry on oeis.org

1, 2, 3, 6, 14, 38, 113, 356, 1164, 3906, 13364, 46426, 163294, 580316, 2080475, 7515038, 27324014, 99920756, 367264130, 1356043388, 5027345564, 18706888196, 69841532210, 261545298848, 982175296016, 3697785571820, 13954630170720, 52776659865348, 200006396351216, 759386612309146, 2888310863702017
Offset: 1

Author

Volodymyr Mazorchuk, Aug 26 2011

Keywords

Comments

a(n+1) - a(n) = A000958(n) (this reduces to David Callan's comment on A000958(n) from Aug 23 2011).
The sequence gives the trace of the matrix describing the statistics of Dyck paths of semilength n with respect to the heights of the first and the last peaks, see the paper of Baur and Mazorchuk.

Programs

  • Maple
    for n from 1 by 1 to 100 do 1+sum(binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k), k = 1 .. n-1) end do
  • Mathematica
    Table[1+Sum[Binomial[2*n-2-2*k, n-1-k]-Binomial[2*n-2-2*k, n-1-2*k],{k,1,n-1}],{n,1,20}] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    a(n)=1+sum(k=1,n-1,binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k));

Formula

a(n) = 1 + Sum_{i=1..n-1} A000958(i).
Recurrence: 2*n*(5*n-11)*a(n) = 3*(15*n^2 - 53*n + 40)*a(n-1) - 3*(5*n^2 - 21*n + 20)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 5*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014

A194460 a(n) is the number of basic ideals in the standard Borel subalgebra of the untwisted affine Lie algebra sl_n.

Original entry on oeis.org

1, 4, 18, 82, 370, 1648, 7252, 31582, 136338, 584248, 2488156, 10540484, 44450068, 186715072, 781628008, 3262239862, 13579324498, 56391614632, 233686316428, 966556003132, 3990942300508, 16453094542432, 67733512006168
Offset: 1

Author

Volodymyr Mazorchuk, Aug 24 2011

Keywords

Comments

a(n) also equals the number of pairs (p,q) of Dyck paths of semilength n, such that the first peak of q has height at least n-l(p), where l(p) is the height of the last peak of p, and the last peak of q has height at least n-f(p), where f(p) is the height of the first peak of p.
From Per Alexandersson, May 26 2018: (Start)
a(n) is also equal to the number of circular arc digraphs on n vertices.
a(n) is equal to the number of lists b(1),b(2),...,b(n) such that 0 <= b(i) < n and b(i)-1 <= b(i+1) for i=1..n-1 and b(n)-1 <= b(1).
The subset of such sequences such that b(n)=0 is given by the Catalan numbers, A000108. (End)
Christian Krattenthaler has shown that a(n) = (n+2)*binomial(2*n-1,n-1) - 2^(2*n-1), which also implies the above recursion observed by D. S. McNeil. - Volodymyr Mazorchuk, Aug 26 2011

Examples

			G.f. = x + 4*x^2 + 18*x^3 + 82*x^4 + 370*x^5 + 1648*x^6 + 7252*x^7 + 31582*x^8 + ... - _Michael Somos_, Jun 28 2018
		

Programs

  • Magma
    [(n+2)*Binomial(2*n-1, n-1) - 2^(2*n-1): n in [1..30]]; // G. C. Greubel, Aug 13 2018
  • Mathematica
    a[n_] := (n+2) Binomial[2n-1, n-1] - 2^(2n-1);
    Array[a, 23] (* Jean-François Alcover, Jul 27 2018, after Michael Somos *)
  • PARI
    {a(n) = if( n<1, 0, (n+2) * binomial(2*n-1, n-1) - 2^(2*n-1))}; /* Michael Somos, Jun 28 2018 */
    
  • Sage
    def A194460(n):
        if n == 1: return 1
        cf = CachedFunction(lambda i,j,n: binomial(n-1-i+n-1-j,n-i-1)-binomial(n-1-i+n-1-j, n-i-j-1))
        CP = cartesian_product
        return sum(sum(cf(i,j,n)*cf(k,m,n) for k,m in CP([[n-i..n],[n-j..n]])) for i,j in CP([[1..n],[1..n]]))
    # D. S. McNeil, Aug 25 2011
    

Formula

It appears that the sequence is given by a(1)=1, a(n) = 4*a(n-1) + 2*binomial(2*n-3, n-3). - D. S. McNeil, Aug 25 2011
0 = a(n)*(+2304*a(n+1) -3744*a(n+2) +1464*a(n+3) -168*a(n+4)) +a(n+1)*(-96*a(n+1) +1192*a(n+2) -730*a(n+3) +102*a(n+4)) +a(n+2)*(-78*a(n+2) +99*a(n+3) -19*a(n+4)) +a(n+3)*(-3*a(n+3) +a(n+4)) for all n>0. - Michael Somos, Jun 28 2018

Extensions

More terms from D. S. McNeil, Aug 25 2011