cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182186 Number b(n) of basic ideals in the Borel subalgebra of the untwisted affine Lie algebra of type B.

Original entry on oeis.org

24, 128, 648, 3160, 14984, 69536, 317264, 1427912, 6355080, 28021504, 122586224, 532681648, 2301267408, 9891512000, 42327269792, 180410129576, 766250022536, 3244192404032, 13696322822960, 57673821115088, 242287778611184, 1015664308220864, 4249246138360928
Offset: 2

Views

Author

Jonathan Nilsson, Apr 16 2012

Keywords

Comments

The corresponding sequence for the usual type B Lie algebra is given by the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    B:=n->(3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1): seq(B(n), n=2..30);
  • PARI
    a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1); \\ Michel Marcus, Aug 18 2013

Formula

a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1).
a(n) - 8*a(n-1) + 16*a(n-2) = (24/(n-1))*binomial(2*n-6,n-2) for n>3.
-(n-1)*(9*n^2-51*n+76)*a(n) +2*(36*n^3-231*n^2+478*n-295)*a(n-1) -8*(2*n-5)*(9*n^2-33*n+34)*a(n-2)=0. - R. J. Mathar, Oct 27 2017

A200613 Number of quasi-abelian ideals in the affine Lie algebra sl_n^{hat}.

Original entry on oeis.org

1, 3, 11, 44, 183, 774, 3294, 14034, 59711, 253430, 1072506, 4525168, 19036726, 79861404, 334155036, 1394789214, 5808981711, 24143440374, 100156051746, 414762312504, 1714844273586, 7079573497524, 29187378344676, 120180109515204, 494264431607718, 2030539136846844
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2011

Keywords

Comments

Christian Krattenthaler has shown that a(n)=((n+4)/4)*binomial(2*n,n)-3*2^(2*n-3). This implies that a(n)=A194460(n) - A000531(n-1). The latter fact was first empirically observed by D. S. McNeil. [Volodymyr Mazorchuk, Sep 14 2012]

Programs

  • PARI
    a(n) = ((n+4)/4)*binomial(2*n,n)-3*2^(2*n-3);

Formula

a(n) = ((n+4)/4)*binomial(2*n,n)-3*2^(2*n-3). [Volodymyr Mazorchuk, Sep 14 2012]

A332389 Number A(n,w) of circular Dyck paths with n entries, and width at most w.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 18, 10, 5, 1, 32, 47, 28, 13, 6, 1, 64, 123, 82, 38, 16, 7, 1, 128, 322, 244, 117, 48, 19, 8, 1, 256, 843, 730, 370, 152, 58, 22, 9, 1, 512, 2207, 2188, 1186, 496, 187, 68, 25, 10, 1, 1024, 5778, 6562, 3827, 1648, 622, 222, 78, 28, 11
Offset: 1

Views

Author

Per W. Alexandersson, Feb 10 2020

Keywords

Comments

A(n,w) is the number of circular Dyck paths of size n, and width at most w.
This is also the number of circular area lists, a_1, a_2, ..., a_n such that 0 <= a_i <= w-1, and a_{i+1} < a_i + 1, for all 1 <= i <= n, and the index i is taken modulo n.
The values of w are given by the row index.
A(n,w) is given by summing binomial(2*n - 1, n - 1 - (w+2) k) - binomial(2*n - 1, n + j + (w+2)*k) over k=1..w and k over all integers.

Examples

			The table begins as
1,    2,    3,    4,    5, ...
1,    4,    7,    10,   13, ...
1,    8,    18,   28,   38, ...
1,    16,   47,   82,   117, ...
1,    32,   123,  244,  370, ...
...
A(5,3)=123 and a few of the corresponding circular area lists are 00000, 10000,...,12210,...,12222, 22222.
		

Crossrefs

A194460 is the diagonal.

Programs

  • Mathematica
    CircularDyckPaths[n_, w_] := With[{d = w + 2},
       Sum[Binomial[2 n - 1, n - 1 - d s] -
         Binomial[2 n - 1, n + j + d s]
        , {j, w},
        {s, -2 (n + 2), 2 (n + 2)}]
       ];
    Table[
    CircularDyckPaths[n, w]
    , {n, 1, 10}, {w, 1, 10}]

Formula

A(n,w) = Sum_{k=-2*(n+2)..2*(n+2)} Sum_{j=1..w} binomial(2n-1, n-1-(w+2)*k) - binomial(2*n-1, n + j + (w+2)*k).
Showing 1-3 of 3 results.