A359039 Number of Wachs permutations of size n.
1, 1, 2, 4, 8, 24, 48, 192, 384, 1920, 3840, 23040, 46080, 322560, 645120, 5160960, 10321920, 92897280, 185794560, 1857945600, 3715891200, 40874803200, 81749606400, 980995276800, 1961990553600, 25505877196800, 51011754393600, 714164561510400, 1428329123020800
Offset: 0
Keywords
Examples
For n=4, a(n)=8, since we have the 8 Wachs permutations 1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..806
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
Programs
-
Maple
A359039 := proc(n) local m ; m := floor(n/2) ; if type(n,'even') then m!*2^m ; else (m+1)!*2^m ; end if; end proc: # R. J. Mathar, Jul 17 2023 # second Maple program: a:= n-> ceil(n/2)!*2^floor(n/2): seq(a(n), n=0..28); # Alois P. Heinz, Dec 21 2023
-
Mathematica
a[n_]:=If[EvenQ[n], (n/2)! 2^(n/2), ((n + 1)/2)!*2^((n - 1)/2)]
Formula
If n=2m, then a(n) = m!*2^m, if n=2m+1, then a(n) = (m+1)!*2^m.
Sum_{n>=0} 1/a(n) = 3*sqrt(e) - 2. - Amiram Eldar, Jan 25 2023
D-finite with recurrence a(n) +2*a(n-1) +(-n-1)*a(n-2) +2*(-n+1)*a(n-3)=0. - R. J. Mathar, Jul 17 2023
Comments