cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jonathan Nilsson

Jonathan Nilsson's wiki page.

Jonathan Nilsson has authored 1 sequences.

A182186 Number b(n) of basic ideals in the Borel subalgebra of the untwisted affine Lie algebra of type B.

Original entry on oeis.org

24, 128, 648, 3160, 14984, 69536, 317264, 1427912, 6355080, 28021504, 122586224, 532681648, 2301267408, 9891512000, 42327269792, 180410129576, 766250022536, 3244192404032, 13696322822960, 57673821115088, 242287778611184, 1015664308220864, 4249246138360928
Offset: 2

Author

Jonathan Nilsson, Apr 16 2012

Keywords

Comments

The corresponding sequence for the usual type B Lie algebra is given by the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    B:=n->(3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1): seq(B(n), n=2..30);
  • PARI
    a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1); \\ Michel Marcus, Aug 18 2013

Formula

a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1).
a(n) - 8*a(n-1) + 16*a(n-2) = (24/(n-1))*binomial(2*n-6,n-2) for n>3.
-(n-1)*(9*n^2-51*n+76)*a(n) +2*(36*n^3-231*n^2+478*n-295)*a(n-1) -8*(2*n-5)*(9*n^2-33*n+34)*a(n-2)=0. - R. J. Mathar, Oct 27 2017