A362596
Number of parking functions of size n avoiding the patterns 213 and 321.
Original entry on oeis.org
1, 1, 3, 13, 60, 275, 1238, 5480, 23922, 103267, 441798, 1876366, 7921488, 33275758, 139194812, 580180598, 2410827422, 9990993443, 41308185542, 170439003998, 701953309592, 2886284314298, 11850433719572, 48591008205608, 199002198798980, 814117064956430
Offset: 0
For n=3 the a(3)=13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
-
a(n)=if(n==0, 1, (n^2 - 3*n + 4)*binomial(2*n,n)/(4*(n+1)) + 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
from math import comb
def A362596(n): return ((n*(n-3)+4)*comb(n<<1,n)//(n+1)>>2)+(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
A362595
Number of parking functions of size n avoiding the patterns 132 and 321.
Original entry on oeis.org
1, 1, 3, 12, 52, 229, 1006, 4387, 18978, 81489, 347614, 1474436, 6223328, 26156242, 109528108, 457167817, 1902808318, 7899987577, 32725812958, 135297527872, 558357811048, 2300564293942, 9465003608548, 38889193275142, 159591154157092, 654190748282074
Offset: 0
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
-
A362595 := proc(n)
if n = 0 then
1;
else
(n^2+n+4)*A000108(n)/4 -4^(n-1)/2 ;
end if;
end proc:
seq(A362595(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
-
a(n)=if(n==0, 1, (n^2 + n + 4)*binomial(2*n,n)/(4*(n+1)) - 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
from math import comb
def A362595(n): return ((n*(n+1)+4)*comb(n<<1,n)//(n+1)>>2)-(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
A362741
Number of parking functions of size n avoiding the pattern 123.
Original entry on oeis.org
1, 1, 3, 11, 48, 232, 1207, 6631, 37998, 225182, 1371560, 8546760, 54294880, 350658336, 2297296991, 15239785151, 102218278626, 692361482818, 4730891905450, 32581995322522, 226000929559056, 1577824515023456, 11080975421752488, 78244477268207656
Offset: 0
For n=3 the a(3)=11 parking functions, given in block notation, are {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}; {3},{2},{1}.
-
a:= proc(n) option remember; `if`(n<2, 1, (8*(3*n+4)*(n-1)^2*
a(n-2)+(21*n^3+25*n^2-2*n-8)*a(n-1))/((3*n+1)*(n+2)^2))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 01 2023
A362744
Number of parking functions of size n avoiding the patterns 312 and 321.
Original entry on oeis.org
1, 1, 3, 13, 63, 324, 1736, 9589, 54223, 312369, 1826847, 10818156, 64737684, 390877456, 2378312780, 14568360645, 89766137967, 556008951667, 3459976045201, 21621154097573, 135619427912599, 853590782088272, 5389272616262656, 34123058549079788, 216621704634708868
Offset: 0
The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.
When n = 3 there are 5 Dyck paths:
w(NNNEEE) = [3], contributing 1 to the sum;
w(NNENEE) = [2,1], contributing 2+1 = 3 to the sum;
w(NNEENE) = [2,1], contributing 2+1 = 3 to the sum;
w(NENNEE) = [1,2], contributing 1+1 = 2 to the sum;
w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.
Therefore, a(3) = 1+3+3+2+4 = 13.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2
+146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/
(4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
Showing 1-4 of 4 results.