A253141 If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.
1, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1
Offset: 1
Examples
2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2. 6 = 2*3 is not a prime power; a(6) = 1. 8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2. 32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Morgan Ward, A note on divisibility sequences, Bull. Amer. Math. Soc., 45 (1939), 334-336.
- Index entries for sequences computed from exponents in factorization of n
Programs
-
Mathematica
Table[If[PrimePowerQ[n], Exp[MangoldtLambda[DivisorSigma[0, n]]], 1], {n, 1, 100}] (* Indranil Ghosh, Jul 19 2017 *)
-
PARI
A014963(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ This function from Charles R Greathouse IV, Jun 10 2011 A253141(n) = if(1==omega(n), A014963(numdiv(n)), 1); \\ Antti Karttunen, Jul 19 2017
Comments