cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matthew Vandermast

Matthew Vandermast's wiki page.

Matthew Vandermast has authored 207 sequences. Here are the ten most recent ones:

A253141 If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1
Offset: 1

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Since A253139(n) = Product_{d|n} a(d), A253139 is a divisibility sequence.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2.
6 = 2*3 is not a prime power; a(6) = 1.
8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2.
32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
		

Crossrefs

Programs

A253139 a(n) = lcm_{d|n} tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 12, 2, 4, 4, 60, 2, 12, 2, 12, 4, 4, 2, 24, 6, 4, 12, 12, 2, 8, 2, 60, 4, 4, 4, 36, 2, 4, 4, 24, 2, 8, 2, 12, 12, 4, 2, 120, 6, 12, 4, 12, 2, 24, 4, 24, 4, 4, 2, 24, 2, 4, 12, 420, 4, 8, 2, 12, 4, 8, 2, 72, 2, 4, 12, 12, 4, 8
Offset: 1

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

A divisibility sequence (cf. Ward link and second formula).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			The divisors of 20 are 1, 2, 4, 5, 10 and 20, which have 1, 2, 3, 2, 4 and 6 divisors respectively. The least common multiple of 1, 2, 3, 2, 4 and 6 is 12; therefore, a(20) = 12.
		

Crossrefs

A250270 gives range of values. A141586 lists numbers n such that a(n) divides n.

Programs

  • Mathematica
    Table[LCM@@DivisorSigma[0,Divisors[n]],{n,100}] (* Harvey P. Dale, Sep 01 2017 *)
    lcm[n_] := lcm[n] = LCM @@ Range[n]; a[1] = 1; a[n_] := Times @@ (lcm [Last[#] + 1] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ Michel Marcus, Jan 23 2015

Formula

If n = Product_ prime(i)^e(i), then a(n) = Product_ A003418(e(i)+1).
a(n) = Product_{d|n} A253141(d).

A250270 Products of terms of A003418.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 960, 1024, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456
Offset: 1

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

Includes all factorials and Jordan-Polya numbers, since n! = Product_{i = 1..n} A003418(floor(n/i)) for positive n.

Examples

			720 = 2*6*60 = 12*60. Since 2, 6, 12 and 60 are all terms of A003418, 720 is a term of this sequence.
		

Crossrefs

Range of values of A253139. Subsequences include A000142, A001013, A001813, A025527, A064350, A166338, A250569.
Subsequence of A025487.

Programs

  • PARI
    f(n) = lcm(vector(n, i, i)); \\ A003418
    mul(x,y) = x*y;
    lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok,  nv = select(x->(xMichel Marcus, May 09 2021

A250269 Primitive part of n! (for n>=1): n! = Product_{d|n} a(d).

Original entry on oeis.org

1, 2, 6, 12, 120, 60, 5040, 1680, 60480, 15120, 39916800, 55440, 6227020800, 8648640, 1816214400, 518918400, 355687428096000, 147026880, 121645100408832000, 55870214400, 1689515283456000, 14079294028800, 25852016738884976640000, 771008958720
Offset: 1

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

The title is analogous to the title of A061446.
For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Not every divisibility sequence b corresponds to some integer sequence a such that b(n) = Product_{d|n} a(d), however.
This sequence is not itself a divisibility sequence; a(15) does not divide a(30), for example.

Examples

			The divisors of 10 are 1, 2, 5 and 10. 10! = a(1) * a(2) * a(5) * a(10) = 1 * 2 * 120 * 15120 = 3628800.
Between 1 and 10 inclusive, 4 integers are coprime to 10: 1, 3, 7 and 9. Let b(n) = lcm (1...n) = A003418(n), and let [x] denote the floor function. Then:
a(10) = b[10/1] * b[10/3] * b[10/7] * b[10/9]
"   "   = b(10) * b(3) * b(1) * b(1)
"   "   = 2520 * 6 * 1 * 1
"   "   = 15120.
		

Crossrefs

Cf. A000142, A075071. Subsequence of A250270.
Cf. A000010 (comments on product formulas), A008683.

Programs

  • Mathematica
    Array[Product[(d!)^MoebiusMu[#/d], {d, Divisors[#]}] &, 24] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    a(n)={my(r=1);fordiv(n,d,r*=d!^moebius(n/d));r} \\ Joerg Arndt, Jan 18 2015

Formula

a(n) = Product_{i = 1..n, gcd(n, i) = 1} lcm (1..floor(n/i)).
a(n) = Product_{i = 1..floor(n/2), gcd(n, i) = 1} lcm (1..floor(n/i)) (equivalent formula).
a(n) = n! iff n is prime.
a(n) = Product_{d|n} (d!)^moebius(n/d). - Joerg Arndt, Jan 18 2015
a(n) = Product_{k=1..n} (gcd(n,k)!)^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} ((n/gcd(n,k))!)^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021

A242453 (Conjectured) infinite nondecreasing sequence with a(1) = 1 such that the divisors of n appear a total of a(n) times in the sequence.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23
Offset: 1

Author

Matthew Vandermast, Jul 24 2014

Keywords

Comments

Can it be proved or disproved that this sequence is valid? It is invalid if, for some value of n, it is impossible for a(n) to be as great as the total number of appearances that the aliquot divisors of n have already made in the sequence.
A near-example: The combination of the sequence definition and the values of terms a(1)-a(29) eliminates all possible values of a(30) except for the number 13. If the aliquot divisors of 30 (1, 2, 3, 5, 6, 10 and 15) appeared in the sequence a total of 14 or more times, 13 would also be eliminated as a possible value, and this sequence would be invalid. Since 30's aliquot divisors appear in the sequence a total of only 12 times, no contradiction occurs.
The first 2500 terms appear to be free of any contradiction that would "annihilate" the sequence.

Examples

			a(2) cannot be 1, because then it would be the second term in the sequence to divide 1. (Since a(1) = 1, it is necessary that exactly 1 term in the sequence is a divisor of 1.)
Nor can a(2) be 3 or greater, because then a(2) would be greater than the number of terms in the sequence that divided 2 (there would be only 1 such term). Since, by definition, a(2) must equal the number of terms in the sequence that divide 2, this is a contradiction.
Since 2 is the only possible value for a(2) that does not create a contradiction, a(2) = 2.
		

Crossrefs

Cf. A001462.

A238748 Numbers k such that each integer that appears in the prime signature of k appears an even number of times.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Author

Matthew Vandermast, May 08 2014

Keywords

Comments

Values of n for which all numbers in row A238747(n) are even. Also, numbers n such that A000005(n^m) is a perfect square for all nonnegative integers m; numbers n such that A181819(n) is a perfect square; numbers n such that A182860(n) is odd.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 33, 314, 3119, 31436, 315888, 3162042, 31626518, 316284320, 3162915907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3162... . - Amiram Eldar, Nov 28 2023

Examples

			The prime signature of 36 = 2^2 * 3^2 is {2,2}. One distinct integer (namely, 2) appears in the prime signature, and it appears an even number of times (2 times). Hence, 36 appears in the sequence.
The prime factorization of 1260 = 2^2 * 3^2 * 5^1 * 7^1. Exponent 2 occurs twice (an even number of times), as well as exponent 1, thus 1260 is included. It is also the first term k > 1 in this sequence for which A182850(k) = 4, not 3. - _Antti Karttunen_, Feb 06 2016
		

Crossrefs

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[Tally[FactorInteger[n][[;; , 2]]][[;; , 2]], EvenQ]; Select[Range[200], q] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], m = #e); if(m%2, return(0)); e = vecsort(e); forstep(i = 1, m, 2, if(e[i] != e[i+1], return(0))); 1;} \\ Amiram Eldar, Nov 28 2023
  • Scheme
    (define A238748 (MATCHING-POS 1 1 (lambda (n) (square? (A181819 n)))))
    (define (square? n) (not (zero? (A010052 n))))
    ;; Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 06 2016
    

A238747 Row n of table gives prime metasignature of n: count total appearances of each distinct integer that appears in the prime signature of n, then arrange totals in nonincreasing order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1
Offset: 2

Author

Matthew Vandermast, May 08 2014

Keywords

Comments

A prime metasignature is analogous to the signature of a partition (cf. A115621); it is the signature of a prime signature.
Row n also gives prime signature of A181819(n).

Examples

			The prime signature of 72 (2^3*3^2) is {3,2}. The numbers 3 and 2 each appear once; therefore, the prime metasignature of 72 is {1,1}.
The prime signature of 120 (2^3*3*5) is {3,1,1}. 3 appears 1 time and 1 appears 2 times; therefore, the prime metasignature of 120 is {2,1}.
		

Crossrefs

Length of row n equals A071625(n); sum of numbers in row n is A001221(n).

Formula

Row n is identical to row A181819(n) of table A212171.

A238746 Number of distinct prime signatures that occur among the divisors of the n-th prime signature number (A025487(n)).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 7, 4, 6, 6, 9, 7, 7, 9, 11, 10, 8, 12, 9, 13, 5, 10, 13, 9, 15, 14, 15, 9, 14, 16, 10, 18, 19, 17, 13, 18, 10, 19, 11, 16, 21, 12, 15, 24, 19, 17, 22, 16, 22, 12, 23, 24, 6, 19, 20, 29, 21, 21, 26, 22, 25, 13, 30, 27, 11, 26, 25, 19, 34
Offset: 1

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

Also the number of members of A025487 that divide A025487(n).

Examples

			5 members of A025487 divide A025487(6) = 12 (namely, 1, 2, 4, 6 and 12); therefore, a(6) = 5.
		

Crossrefs

Rearrangement of A115728, A115729 and A238690.
A116473(n) is the number of times n appears in the sequence.

Programs

  • Mathematica
    lpsQ[n_] := n == 1 || (Max@ Differences[(f = FactorInteger[n])[[;;,2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]); lps = Select[Range[6000], lpsQ]; c[n_] := Count[Divisors[n], ?(MemberQ[lps, #] &)]; c /@ lps  (* _Amiram Eldar, Jan 21 2024 *)

Formula

a(n) = A085082(A025487(n)) = A085082(A181822(n)).
a(n) = A322584(A025487(n)). - Amiram Eldar, Jan 21 2024

A238745 a(1) = 1; for n > 1, if the first integer with the same prime signature as n is factorized into primorials as Product A002110(i)^e(i), then a(n) = Product prime(i)^e(i).

Original entry on oeis.org

1, 2, 2, 4, 2, 3, 2, 8, 4, 3, 2, 6, 2, 3, 3, 16, 2, 6, 2, 6, 3, 3, 2, 12, 4, 3, 8, 6, 2, 5, 2, 32, 3, 3, 3, 9, 2, 3, 3, 12, 2, 5, 2, 6, 6, 3, 2, 24, 4, 6, 3, 6, 2, 12, 3, 12, 3, 3, 2, 10, 2, 3, 6, 64, 3, 5, 2, 6, 3, 5, 2, 18, 2, 3, 6, 6, 3, 5, 2, 24, 16, 3, 2
Offset: 1

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

Alternate definition: a(1) = 1; for n > 1, if row n of table A238744 is {k(1), k(2),...,k(A051903(n))}, then a(n) = Product {i = 1 to A051903(n)} prime(k(i)).
Since the first integer of each prime signature (A025487) is always a product of primorials (A002110), there is always a value for a(n). Every positive integer appears in the sequence.
a(m) = a(n) iff m and n have the same prime signature. If the prime signatures of m and n are conjugate to each other when they are viewed as partitions, then a(n) = A181819(m) and a(m) = A181819(n).

Examples

			The first integer with the same prime signature as 40 is 24 = 2^3*3. Since the factorization of 24 into primorials is 24 = 2^2*6 = A002110(1)^2*A002110(2), a(24) = a(40) = prime(1)^2*prime(2) = 2^2*3 = 12.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, d, a}, While[n - Times @@ Prime@ Range[k + 1] >= 0, k++]; If[n == Product[Prime@ i, {i, k}], Prime@ k, d = Select[Reverse@ FoldList[#1 #2 &, Prime@ Range@ k], Divisible[n, #] &]; If[AllTrue[#, IntegerQ], Times @@ Map[(FactorInteger[#1][[-1, 1]])^#2 & @@ # &, Reverse@ Tally@ #], False] &@ Rest@ NestWhileList[Function[P, {#1/P, P}]@ SelectFirst[d, Function[k, Divisible[#1, k]]] & @@ # &, {n, 1}, First@ # > 1 &][[All, -1]]]]; Table[f@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]] - Boole[n == 1], {n, 83}] (* Michael De Vlieger, May 19 2017, Version 10.2 *)

Formula

a(n) = A181819(A124859(n)).
a(n) = A122111(A181819(n)).

A238744 Irregular table read by rows: T (n, k) gives the number of primes p such that p^k divides n; table omits all zero values.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2
Offset: 2

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

If the prime signature of n (nonincreasing version) is viewed as a partition, row n gives the conjugate partition.

Examples

			24 = 2^3*3 is divisible by two prime numbers (2 and 3), one square of a prime (4 = 2^2), and one cube of a prime (8 = 2^3); therefore, row 24 of the table is {2,1,1}.
From _Gus Wiseman_, Mar 31 2022: (Start)
Rows begin:
     1: ()        16: (1,1,1,1)    31: (1)
     2: (1)       17: (1)          32: (1,1,1,1,1)
     3: (1)       18: (2,1)        33: (2)
     4: (1,1)     19: (1)          34: (2)
     5: (1)       20: (2,1)        35: (2)
     6: (2)       21: (2)          36: (2,2)
     7: (1)       22: (2)          37: (1)
     8: (1,1,1)   23: (1)          38: (2)
     9: (1,1)     24: (2,1,1)      39: (2)
    10: (2)       25: (1,1)        40: (2,1,1)
    11: (1)       26: (2)          41: (1)
    12: (2,1)     27: (1,1,1)      42: (3)
    13: (1)       28: (2,1)        43: (1)
    14: (2)       29: (1)          44: (2,1)
    15: (2)       30: (3)          45: (2,1)
(End)
		

Crossrefs

Row lengths are A051903(n); row sums are A001222(n).
Cf. A217171.
These partitions are ranked by A238745.
For prime indices A296150 instead of exponents we get A321649, rev A321650.
A000700 counts self-conjugate partitions, ranked by A088902.
A003963 gives product of prime indices, conjugate A329382.
A008480 gives number of permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798.
A124010 gives prime signature, sorted A118914, length A001221.
A352486-A352490 are sets related to the fixed points of A122111.

Programs

  • Mathematica
    Table[Length/@Table[Select[Last/@FactorInteger[n],#>=k&],{k,Max@@Last/@FactorInteger[n]}],{n,2,100}] (* Gus Wiseman, Mar 31 2022 *)

Formula

Row n is identical to row A124859(n) of table A212171.