A354826 Dirichlet inverse of A238745.
1, -2, -2, 0, -2, 5, -2, 0, 0, 5, -2, -2, -2, 5, 5, 0, -2, -2, -2, -2, 5, 5, -2, 0, 0, 5, 0, -2, -2, -17, -2, 0, 5, 5, 5, 8, -2, 5, 5, 0, -2, -17, -2, -2, -2, 5, -2, 0, 0, -2, 5, -2, -2, 0, 5, 0, 5, 5, -2, 16, -2, 5, -2, 0, 5, -17, -2, -2, 5, -17, -2, -8, -2, 5, -2, -2, 5, -17, -2, 0, 0, 5, -2, 16, 5, 5, 5, 0, -2, 16
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12600
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
PARI
A124859(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1); factorback(f); }; \\ From A124859 A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A238745(n) = A181819(A124859(n)); memoA354826 = Map(); A354826(n) = if(1==n,1,my(v); if(mapisdefined(memoA354826,n,&v), v, v = -sumdiv(n,d,if(d
A238745(n/d)*A354826(d),0)); mapput(memoA354826,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA238745(n/d) * a(d).
Comments