cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 398 results. Next

A182850 a(n) = number of iterations that n requires to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

The fixed points of the x -> A181819(x) map are 1 and 2. Note that the x -> A000005(x) map has the same fixed points, and that A000005(n) = A181819(n) iff n is cubefree (cf. A004709). Under the x -> A181819(x) map, it seems significantly easier to generalize about which kinds of integers take a given number of iterations to reach a fixed point than under the x -> A000005(x) map.
Also the number of steps in the reduction of the multiset of prime factors of n wherein one repeatedly takes the multiset of multiplicities. For example, the a(90) = 5 steps are {2,3,3,5} -> {1,1,2} -> {1,2} -> {1,1} -> {2} -> {1}. - Gus Wiseman, May 13 2018

Examples

			A181819(6) = 4; A181819(4) = 3; A181819(3) = 2; A181819(2) = 2. Therefore, a(6) = 3, a(4) = 2, a(3)= 1, and a(2) = 0.
		

Crossrefs

A182857 gives values of n where a(n) increases to a record.

Programs

  • Haskell
    a182850 n = length $ takeWhile (`notElem` [1,2]) $ iterate a181819 n
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Mathematica
    Table[If[n<=2,0,Length[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]-1],{n,100}] (* Gus Wiseman, May 13 2018 *)
  • Scheme
    ;; With memoization-macro definec.
    (definec (A182850 n) (if (<= n 2) 0 (+ 1 (A182850 (A181819 n))))) ;; Antti Karttunen, Feb 05 2016

Formula

For n > 2, a(n) = a(A181819(n)) + 1.
a(n) = 0 iff n equals 1 or 2.
a(n) = 1 iff n is an odd prime (A000040(n) for n>1).
a(n) = 2 iff n is a composite perfect prime power (A025475(n) for n>1).
a(n) = 3 iff n is a squarefree composite integer or a power of a squarefree composite integer (cf. A182853).
a(n) = 4 iff n's prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number (cf. A182854).

A323014 a(1) = 0; a(prime) = 1; otherwise a(n) = 1 + a(A181819(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Except for n = 2, same as A182850. Unlike A182850, the terms of this sequence depend only on the prime signature (A101296, A118914) of the index.

Crossrefs

Positions of 1's are the prime numbers A000040.
Positions of 2's are the proper prime powers A246547.
Positions of 3's are A182853.
Row lengths of A323023.

Programs

  • Mathematica
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@FactorInteger[n]]]];
    Array[dep,100]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323014(n) = if(1==n,0,if(isprime(n),1, 1+A323014(A181819(n)))); \\ Antti Karttunen, Jun 10 2022

Formula

For all n >= 1, a(n) = a(A046523(n)). [See comment] - Antti Karttunen, Jun 10 2022

Extensions

Terms a(88) and beyond from Antti Karttunen, Jun 10 2022

A182857 Smallest number that requires exactly n iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

1, 3, 4, 6, 12, 60, 2520, 1286485200, 35933692027611398678865941374040400000
Offset: 0

Views

Author

Matthew Vandermast, Jan 05 2011

Keywords

Comments

a(9) has 296 digits.
Related to Levine's sequence (A011784): A011784(n) = A001222(a(n)) = A001221(a(n+1)) = A051903(a(n+2)) = A071625(a(n+2)). Also see A182858.
Values of n where A182850(n) increases to a record.
The multiplicity of prime(k) in a(n+1) is the k-th largest prime index of a(n), which is A296150(a(n),k). - Gus Wiseman, May 13 2018

Examples

			From _Gus Wiseman_, May 13 2018: (Start)
Like A001462 the following sequence of multisets whose Heinz numbers belong to this sequence is a run-length describing sequence, as the number of k's in row n + 1 is equal to the k-th term of row n.
{2}
{1,1}
{1,2}
{1,1,2}
{1,1,2,3}
{1,1,1,2,2,3,4}
{1,1,1,1,2,2,2,3,3,4,4,5,6,7}
{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,7,8,8,9,9,10,10,11,12,13,14}
(End)
		

Crossrefs

Programs

  • Mathematica
    Prepend[Function[m,Times@@Prime/@m]/@NestList[Join@@Table[Table[i,{Reverse[#][[i]]}],{i,Length[#]}]&,{2},8],1] (* Gus Wiseman, May 13 2018 *)

Formula

For n > 0, a(n) = A181819(a(n+1)). For n > 1, a(n) = A181821(a(n-1)).

A325277 Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps p^i*...*q^j to prime(i)*...*prime(j) where p through q are distinct primes.

Examples

			Triangle begins:
   1            26 4 3        51 4 3          76 6 4 3
   2            27 5          52 6 4 3        77 4 3
   3            28 6 4 3      53              78 8 5
   4 3          29            54 10 4 3       79
   5            30 8 5        55 4 3          80 14 4 3
   6 4 3        31            56 10 4 3       81 7
   7            32 11         57 4 3          82 4 3
   8 5          33 4 3        58 4 3          83
   9 3          34 4 3        59              84 12 6 4 3
  10 4 3        35 4 3        60 12 6 4 3     85 4 3
  11            36 9 3        61              86 4 3
  12 6 4 3      37            62 4 3          87 4 3
  13            38 4 3        63 6 4 3        88 10 4 3
  14 4 3        39 4 3        64 13           89
  15 4 3        40 10 4 3     65 4 3          90 12 6 4 3
  16 7          41            66 8 5          91 4 3
  17            42 8 5        67              92 6 4 3
  18 6 4 3      43            68 6 4 3        93 4 3
  19            44 6 4 3      69 4 3          94 4 3
  20 6 4 3      45 6 4 3      70 8 5          95 4 3
  21 4 3        46 4 3        71              96 22 4 3
  22 4 3        47            72 15 4 3       97
  23            48 14 4 3     73              98 6 4 3
  24 10 4 3     49 3          74 4 3          99 6 4 3
  25 3          50 6 4 3      75 6 4 3       100 9 3
		

Crossrefs

Row lengths are 1 for n = 1 and A323014(n) for n > 1.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>1&&!PrimeQ[#]&],{n,30}]

Formula

T(n,k) = A325239(n,k) for k <= A323014(n).
A001222(T(n,k)) = A323023(n,k) for n > 1.

A304660 A run-length describing inverse to A181819. The multiplicity of prime(k) in a(n) is the k-th smallest prime index of n, which is A112798(n,k).

Original entry on oeis.org

1, 2, 4, 6, 8, 18, 16, 30, 36, 54, 32, 150, 64, 162, 108, 210, 128, 450, 256, 750, 324, 486, 512, 1470, 216, 1458, 900, 3750, 1024, 2250, 2048, 2310, 972, 4374, 648, 7350, 4096, 13122, 2916, 10290, 8192, 11250, 16384, 18750, 4500, 39366, 32768, 25410, 1296
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Comments

A permutation of A133808. a(n) is the smallest member m of A133808 such that A181819(m) = n.

Examples

			Sequence of normalized prime multisets together with the normalized prime multisets of their images begins:
   1:        {} -> {}
   2:       {1} -> {1}
   3:       {2} -> {1,1}
   4:     {1,1} -> {1,2}
   5:       {3} -> {1,1,1}
   6:     {1,2} -> {1,2,2}
   7:       {4} -> {1,1,1,1}
   8:   {1,1,1} -> {1,2,3}
   9:     {2,2} -> {1,1,2,2}
  10:     {1,3} -> {1,2,2,2}
  11:       {5} -> {1,1,1,1,1}
  12:   {1,1,2} -> {1,2,3,3}
  13:       {6} -> {1,1,1,1,1,1}
  14:     {1,4} -> {1,2,2,2,2}
  15:     {2,3} -> {1,1,2,2,2}
  16: {1,1,1,1} -> {1,2,3,4}
  17:       {7} -> {1,1,1,1,1,1,1}
  18:   {1,2,2} -> {1,2,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    Table[With[{y=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Times@@Power[Array[Prime,Length[y]],y]],{n,100}]

Formula

a(n) = Product_{i = 1..Omega(n)} prime(i)^A112798(n,i).

A325755 Numbers n divisible by their prime shadow A181819(n).

Original entry on oeis.org

1, 2, 9, 12, 18, 36, 40, 60, 84, 112, 120, 125, 132, 156, 180, 204, 225, 228, 250, 252, 276, 280, 336, 348, 352, 360, 372, 396, 440, 441, 444, 450, 468, 492, 516, 520, 540, 560, 564, 600, 612, 636, 675, 680, 684, 708, 732, 760, 804, 828, 832, 840, 852, 876
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions containing their multiset of multiplicities as a submultiset (counted by A325702).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
    60: {1,1,2,3}
    84: {1,1,2,4}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   132: {1,1,2,5}
   156: {1,1,2,6}
   180: {1,1,2,2,3}
   204: {1,1,2,7}
   225: {2,2,3,3}
   228: {1,1,2,8}
   250: {1,3,3,3}
   252: {1,1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Divisible[#,red[#]]&]

A325239 Irregular triangle read by rows where row 1 is {1} and row n > 1 is the sequence starting with n and repeatedly applying A181819 until 2 is reached.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 5, 2, 6, 4, 3, 2, 7, 2, 8, 5, 2, 9, 3, 2, 10, 4, 3, 2, 11, 2, 12, 6, 4, 3, 2, 13, 2, 14, 4, 3, 2, 15, 4, 3, 2, 16, 7, 2, 17, 2, 18, 6, 4, 3, 2, 19, 2, 20, 6, 4, 3, 2, 21, 4, 3, 2, 22, 4, 3, 2, 23, 2, 24, 10, 4, 3, 2, 25, 3, 2, 26, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps n = p^i*...*q^j to prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n.

Examples

			Triangle begins:
   1              26 4 3 2        51 4 3 2          76 6 4 3 2
   2              27 5 2          52 6 4 3 2        77 4 3 2
   3 2            28 6 4 3 2      53 2              78 8 5 2
   4 3 2          29 2            54 10 4 3 2       79 2
   5 2            30 8 5 2        55 4 3 2          80 14 4 3 2
   6 4 3 2        31 2            56 10 4 3 2       81 7 2
   7 2            32 11 2         57 4 3 2          82 4 3 2
   8 5 2          33 4 3 2        58 4 3 2          83 2
   9 3 2          34 4 3 2        59 2              84 12 6 4 3 2
  10 4 3 2        35 4 3 2        60 12 6 4 3 2     85 4 3 2
  11 2            36 9 3 2        61 2              86 4 3 2
  12 6 4 3 2      37 2            62 4 3 2          87 4 3 2
  13 2            38 4 3 2        63 6 4 3 2        88 10 4 3 2
  14 4 3 2        39 4 3 2        64 13 2           89 2
  15 4 3 2        40 10 4 3 2     65 4 3 2          90 12 6 4 3 2
  16 7 2          41 2            66 8 5 2          91 4 3 2
  17 2            42 8 5 2        67 2              92 6 4 3 2
  18 6 4 3 2      43 2            68 6 4 3 2        93 4 3 2
  19 2            44 6 4 3 2      69 4 3 2          94 4 3 2
  20 6 4 3 2      45 6 4 3 2      70 8 5 2          95 4 3 2
  21 4 3 2        46 4 3 2        71 2              96 22 4 3 2
  22 4 3 2        47 2            72 15 4 3 2       97 2
  23 2            48 14 4 3 2     73 2              98 6 4 3 2
  24 10 4 3 2     49 3 2          74 4 3 2          99 6 4 3 2
  25 3 2          50 6 4 3 2      75 6 4 3 2       100 9 3 2
		

Crossrefs

Row lengths are A182850(n) + 1.
See A353510 for a full square array version of this table.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>2&],{n,30}]

Formula

A001222(T(n,k)) = A323023(n,k), n > 2, k <= A182850(n).

A353393 Positive integers m > 1 that are prime or whose prime shadow A181819(m) is a divisor of m that is already in the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 36, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 225, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   36: {1,1,2,2}
		

Crossrefs

The first term that is not a prime power A000961 is 36.
The first term that is not a prime or a perfect power A001597 is 1260. - Corrected by Robert Israel, Mar 10 2025
The non-recursive version is A325755, counted by A325702.
Removing all primes gives A353389.
These partitions are counted by A353426.
The version for compositions is A353431.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with all distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Maple
    pshadow:= proc(n) local F,i;
      F:= ifactors(n)[2];
      mul(ithprime(i),i=F[..,2])
    end proc:
    filter:= proc(n) local s;
      if isprime(n) then return true fi;
      s:= pshadow(n);
      n mod s = 0 and member(s,R)
    end proc:
    R:= {}:
    for i from 2 to 2000 do if filter(i) then R:= R union {i} fi od:
    sort(convert(R,list)); # Robert Israel, Mar 10 2025
  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,200],suQ[#]&]

Formula

Equals A353389 U A000040.

A305732 Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n. A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1,...,m_k) = 1 and the multiset {y_1,...,y_k} is also reducible.

Examples

			60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
    Select[Range[50],rdzQ]

A182855 Numbers that require exactly five iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

In each case, 2 is the fixed point that is reached (1 is the other fixed point of the x -> A181819(x) map).
Includes all integers whose prime signature a) contains two or more distinct numbers, and b) contains no number that occurs the same number of times as any other number. The first member of this sequence that does not fit that description is 75675600, whose prime signature is (4,3,2,2,1,1).
A full characterization is: Numbers whose prime signature (1) has not all equal multiplicities but (2) the numbers of distinct parts appearing with each distinct multiplicity are all equal. For example, the prime signature of 2520 is {1,1,2,3}, which satisfies (1) but fails (2), as the numbers of distinct parts appearing with each distinct multiplicity are 1 (with multiplicity 2, the part being 1) and 2 (with multiplicity 1, the parts being 2 and 3). Hence the sequence does not contain 2520. - Gus Wiseman, Jan 02 2019

Examples

			1. 180 requires exactly five iterations under the x -> A181819(x) map to reach a fixed point (namely, 2).  A181819(180) = 18;  A181819(18) = 6; A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
2. The prime signature of 180 (2^2*3^2*5) is (2,2,1).
a. Two distinct numbers appear in (2,2,1) (namely, 1 and 2).
b. Neither 1 nor 2 appears in (2,2,1) the same number of times as any other number that appears there.
		

Crossrefs

Numbers n such that A182850(n) = 5. See also A182853, A182854.
Subsequence of A059404 and A182851. Includes A085987 and A179642 as subsequences.

Programs

  • Mathematica
    Select[Range[1000],With[{sig=Sort[Last/@FactorInteger[#]]},And[!SameQ@@Length/@Split[sig],SameQ@@Length/@Union/@GatherBy[sig,Length[Position[sig,#]]&]]]&] (* Gus Wiseman, Jan 02 2019 *)
Showing 1-10 of 398 results. Next