cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A182853 Squarefree composite integers and powers of squarefree composite integers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

Numbers that require exactly three iterations to reach a fixed point under the x -> A181819(x) map. In each case, 2 is the fixed point that is reached. (1 is the other fixed point of the x -> A181819(x) map.) Cf. A182850.
Numbers such that A001221(n) > 1 and A071625(n) = 1.

Crossrefs

Numbers n such that A182850(n) = 3. See also A182854, A182855.
Subsequence of A072774 and A182851.
Cf. A120944.

Programs

  • PARI
    isoka(n) = (omega(n) > 1) && issquarefree(n); \\ A120944
    isok(n) = isoka(n) || (ispower(n,,&k) && isoka(k)); \\ Michel Marcus, Jun 24 2017
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A182853(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
  • Scheme
    (define A182853 (MATCHING-POS 1 1 (lambda (n) (= 3 (A182850 n))))) ;; After the alternative definition of the sequence given by the original author. Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 05 2016
    

A375055 Nonsquarefree numbers k divisible by at least 3 distinct primes.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Michael De Vlieger, Oct 22 2024

Keywords

Comments

Also, numbers k such that there exists a pair of necessarily composite divisors {d, k/d}, d < k/d, with quality Q, i.e., gcd(d, k/d) > 1 but there exists a prime p | d that does not divide k/d, and also a prime q | k/d that does not divide d.
A178212 is a proper subset.
This sequence is distinct from A123712 since 420 is here.
This sequence is distinct from A182855 since 360 is here.

Examples

			a(1) = 60 = 2^2 * 3 * 5, the smallest number such that bigomega(60) > omega(60) > 2. Bigomega(60) = 4, omega(60) = 3.
72 is not in the sequence because it is the product of 2 distinct prime factors.
a(2) = 84 = 2^2 * 3 * 7, since bigomega(84) = 4, omega(84) = 3.
a(3) = 90 = 2 * 3^2 * 5, since bigomega(90) = 4, omega(90) = 3.
a(4) = 120 = 2^3 * 3 * 5, since bigomega(120) = 5, omega(120) = 3.
210 is not in the sequence because it is squarefree.
a(35) = 360 = 2^3 * 3^2 * 5 since bigomega(360) = 6, omega(360) = 3.
a(43) = 420 = 2^2 * 3 * 5 * 7 since bigomega(420) = 5, omega(420) = 4, etc.
.
Table showing pairs of factors of a(n) for select n, such that the pair possesses quality Q (see comments).
    n    a(n)   pair of factors with quality Q.
  -------------------------------------------------------------------
    1     60    6 X 10;
    2     84    6 X 14;
    3     90    6 X 15;
    4    120    6 X 20,  10 X 12;
    5    126    6 X 21;
    6    132    6 X 22;
    7    140   10 X 14;
    8    150   10 X 15;
   17    240    6 X 40,  10 X 24, 12 X 20;
   51    480    6 X 80,  10 X 48, 12 X 40, 20 X 24;
  117    840    6 X 140, 10 X 84, 12 X 70, 14 X 60, 20 X 42, 28 X 30.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 2 &]

Formula

{a(n)} = { k : bigomega(k) > omega(k) > 2 }, where bigomega = A001222 and omega = A001221.

A182854 Integers whose prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 242, 244, 245
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

Numbers that require exactly four iterations to reach a fixed point under the x -> A181819(x) map. In each case, 2 is the fixed point that is reached. (1 is the other fixed point of the x -> A181819(x) map.) Cf. A182850.
Not the same sequence as A177425, which is a proper subsequence. 1260 is the first nonmember of A177425 that belongs to this sequence; its prime signature is (2,2,1,1).

Examples

			The prime signature of 12 (2^2*3^1) is (2,1). Since (2,1) contains at least two distinct numbers, and since each number that appears in (2,1) appears exactly as often as any other number that appears, 12 belongs to this sequence.
12 also requires exactly four iterations under the x -> A181819(x) map to reach a fixed point (namely, 2) .  A181819(12) = 6;  A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
		

Crossrefs

Numbers n such that A182850(n) = 4. See also A182853, A182855.
Subsequence of A059404 and A182852.

Programs

  • Mathematica
    aQ[n_] := Length[v = Values @ Counts @ FactorInteger[n][[;;,2]]] > 1 && Length @ Union @ v == 1; Select[Range[250], aQ] (* Amiram Eldar, Aug 08 2019 *)

A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.

Original entry on oeis.org

174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.

Examples

			174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Mathematica
    Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019

Extensions

a(13)-a(24) from Daniel Suteu, Jan 12 2019

A182856 a(0) = 1; for n > 0, a(n) = smallest positive integer whose prime signature contains, for k = 1 to n, exactly one positive number appearing exactly k times.

Original entry on oeis.org

1, 2, 60, 1801800, 11657093261814000, 7167827541370578634694420017740000, 291943326350524088652207164949980988754136887856059678357800000
Offset: 0

Views

Author

Matthew Vandermast, Jan 05 2011

Keywords

Comments

a(n) = smallest number m such that A181819(m) = A006939(n). a(n) belongs to A182855 iff n > 1.
Next term has 105 digits.
Smallest number k with A323022(k) = n, where A323022(m) is the number of distinct multiplicities in the prime signature of m. - Gus Wiseman, Jan 03 2019

Examples

			The canonical prime factorization of a(3) = 1801800 is 2^3*3^2*5^2*7*11*13. The prime signature of 1801800 is therefore (3,2,2,1,1,1). Note that (3,2,2,1,1,1) contains exactly one number that appears once (3), one number that appears twice (2), and one number that appears three times (1).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Times@@Prime[i*(i-1)/2+Ceiling[Range[i*(n-i)]/(n-i)]],{i,n-1}],{n,6}] (* Gus Wiseman, Jan 03 2019 *)
  • PARI
    a(n) = if(n == 0, return(1)); my(f = matrix(binomial(n+1,2), 2)); f[, 1] = primes(#f~ )~; f[, 2] = Vecrev(concat(vector(n, i, vector(n+1-i, j, i))))~; factorback(f) \\ David A. Corneth, Jan 03 2019

Formula

Partial products of A113511.
log a(n) ~ (1/3) n^3 log n. [Charles R Greathouse IV, Jan 13 2012]
A001222(a(n)) = A000292(n). - Gus Wiseman, Jan 03 2019
a(0) = 1; a(n + 1) = A002110(binomial(n + 2, 2)) * a(n). - David A. Corneth, Jan 03 2019

A324206 Numbers with exactly six distinct exponents in their prime factorization, or six distinct parts in their prime signature.

Original entry on oeis.org

5244319080000, 6197831640000, 6857955720000, 7342046712000, 7664774040000, 7866478620000, 8241072840000, 8676964296000, 8740531800000, 9278410680000, 9296747460000, 9578467080000, 9601138008000, 10286933580000, 10329719400000, 10488638160000, 10598658840000, 10705345560000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			6197831640000 = 2^6 * 3^5 * 5^4 * 7^3 * 11 * 13^2 is in the sequence as there are 6 distinct exponents; 1 through 6.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 6

A324207 Numbers with exactly seven distinct exponents in their prime factorization, or seven distinct parts in their prime signature.

Original entry on oeis.org

2677277333530800000, 2992251137475600000, 3164055030536400000, 3501054974617200000, 3536296798834800000, 3622198745365200000, 3748188266943120000, 4015916000296200000, 4189151592465840000, 4207150095548400000, 4280780335431600000, 4373290124002800000, 4429677042750960000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			2677277333530800000 = 2^7 * 3^6 * 5^5 * 7^4 * 11^3 * 13^2 * 17 is in the sequence. There are exactly 7 distinct exponents; 1 through 7 in it.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 7

A324208 Numbers with exactly eight distinct exponents in their prime factorization, or eight distinct parts in their prime signature.

Original entry on oeis.org

25968760179275365452000000, 29023908435660702564000000, 30690352939143613716000000, 31435867585438600284000000, 33959147926744708668000000, 34300982696689921212000000, 36356264250985511632800000, 37151479873700163972000000, 38953140268913048178000000, 39267640824717421116000000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			29023908435660702564000000 = 2^8 * 3^7 * 5^6 * 7^5 * 11^4 * 13^3 * 17 * 19^2 is in the sequence as there are exactly 8 distinct exponents; 1 through 8.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 8
Showing 1-9 of 9 results.