cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A379752 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) > 1 and neither rad(d) | k/d nor rad(k/d) | d, where k is in A375055.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 3, 3, 1, 1, 1, 3, 1, 4, 2, 2, 1
Offset: 1

Views

Author

Michael De Vlieger, Jan 01 2025

Keywords

Comments

Number of ways to write k = A375055(n) as a product of numbers i and j, i < j, that are neither coprime nor divide one another, where each has a factor that does not divide the other. Such numbers i and j are necessarily composite.

Examples

			Let s(n) = A375055(n).
a(1) = 1 since s(1) = 60 = 6 * 10 = (2*3) * (2*5).
a(2) = 1 since s(2) = 84 = 6 * 14 = (2*3) * (2*7).
a(3) = 1 since s(3) = 90 = 6 * 15 = (2*3) * (3*5).
a(4) = 2 since s(4) = 120 = 6*20 = 10*12.
a(17) = 3 since s(17) = 240 = 6*40 = 10*24 = 12*20.
a(51) = 4 since s(51) = 480 = 6*80 = 10*48 = 12*40 = 20*24.
a(117) = 5 since s(117) = 840 = 6*140 = 10*84 = 12*70 = 14*60 = 20*42 = 28*30, etc.
		

Crossrefs

Cf. A375055.

Programs

  • Mathematica
    nn = 120;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Select[Range[nn], PrimeOmega[#] > PrimeNu[#] > 2 & ];
    Table[k = s[[n]];
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
           Nor[Divisible[#2, rad[#1]],
               Divisible[#1, rad[#2]] ] ] & @@ # &)], {n, Length[s]}]

A378769 Intersection of A375055 and A376936.

Original entry on oeis.org

5400, 9000, 10584, 10800, 13500, 16200, 18000, 21168, 21600, 24696, 26136, 27000, 31752, 32400, 36000, 36504, 37044, 40500, 42336, 43200, 45000, 48600, 49000, 49392, 52272, 54000, 62424, 63504, 64800, 67500, 68600, 72000, 73008, 74088, 77976, 78408, 81000, 84672
Offset: 1

Views

Author

Michael De Vlieger, Dec 13 2024

Keywords

Comments

Let omega = A001221, bigomega = A001222, rad = A007947.
Powerful numbers k with bigomega(k) > omega(k) > 2 that are divisible by two distinct prime cubes p^3 and q^3.
Numbers k such that there exists (d, k/d), d | k, such that d neither divides nor is coprime to k/d and vice versa in the following 3 ways:
Type A: rad(d) does not divide d/k and rad(d/k) does not divide d
Type B: rad(d) divides d/k but rad(d/k) does not divide d
Type C: rad(d) | d/k and rad(d/k) | d, hence rad(d) = rad(d/k) = rad(k), a kind of coreful divisor pair.
Since (d, d/k) are noncoprime and do not divide one another, both must be composite, thus k is also composite.
In addition the following kinds of divisor pairs are also seen:
Type D: (d, k/d) such that d | k/d but there exists a factor Q | k/d that does not divide d. Then omega(d) < omega(k/d) = omega(k).
Type E: Nontrivial unitary divisor pairs (d, k/d) such that gcd(d, k/d) = 1, d > 1, k/d > 1. Let prime power factor p^m | k be such that m is maximized. Then set d = p^m and it is clear that for any k in A024619, there exists at least 1 nontrivial unitary divisor pair.
A378767 = { k : omega(k) > 1, p^3 | k for some prime p }, and
A376936 = { k : rad(k)^2 | k, p^3 | k and q^3 | k for distinct primes p, q }.
Therefore, we need only take intersection of A375055 and A376936.

Examples

			Table of the first 12 terms of this sequence, showing examples of types A, B, and C described in Comments.
   n     a(n)  Factors of a(n)    Type A      Type B      Type C
  ----------------------------------------------------------------
   1    5400   2^3 * 3^3 * 5^2    24 * 225    4 * 1350    60 * 90
   2    9000   2^3 * 3^2 * 5^3    18 * 500    4 * 2250    60 * 150
   3   10584   2^3 * 3^3 * 7^2    24 * 441    4 * 2646    84 * 126
   4   10800   2^4 * 3^3 * 5^2    48 * 225    8 * 1350    90 * 120
   5   13500   2^2 * 3^3 * 5^3    12 * 1125   9 * 1500    90 * 150
   6   16200   2^3 * 3^4 * 5^2    24 * 675    4 * 4050    60 * 270
   7   18000   2^4 * 3^2 * 5^3    18 * 1000   8 * 2250   120 * 150
   8   21168   2^4 * 3^3 * 7^2    48 * 441    8 * 2646   126 * 168
   9   21600   2^5 * 3^3 * 5^2    50 * 432    8 * 2700    90 * 240
  10   24696   2^3 * 3^2 * 7^3    18 * 1372   4 * 6174    84 * 294
  11   26136   2^3 * 3^3 * 11^2   24 * 1089   4 * 6534   132 * 198
  12   27000   2^3 * 3^3 * 5^3    24 * 1125   4 * 6750    60 * 450
		

Crossrefs

Programs

  • Mathematica
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^16],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Select[s, PrimeOmega[#] > PrimeNu[#] > 2 &]

Formula

Intersection of A375055, A376936, and A378767.
This sequence is { k : rad(k)^2 | k, bigomega(k) > omega(k) > 2, p^3 | k and q^3 | k for distinct primes p, q }.
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) - ((Sum_{p prime} (1/(p^2*(p-1))))^2 - Sum_{p prime} (1/(p^4*(p-1)^2)))/2 = 0.0025524144364532126894... . - Amiram Eldar, Dec 21 2024

A380143 Sum of divisors d | k such that d and k/d share factors but both have a factor that does not divide the other, where k is in A375055.

Original entry on oeis.org

16, 20, 21, 48, 27, 28, 24, 25, 32, 60, 55, 39, 40, 32, 44, 45, 112, 65, 36, 84, 84, 52, 72, 35, 91, 57, 36, 96, 36, 140, 44, 63, 64, 45, 123, 40, 68, 108, 48, 85, 120, 75, 172, 96, 80, 136, 132, 56, 95, 48, 240, 49, 88, 48, 141, 92, 108, 93, 50, 196, 52, 172
Offset: 1

Views

Author

Michael De Vlieger, Jan 18 2025

Keywords

Comments

In other words, sum of divisors d | k such that gcd(d, k/d) > 1 but neither rad(d) | k/d nor rad(k/d) | d, where rad = A007947 and k is in A375055.
Define quality Q pertaining to 2 natural numbers a and b such that gcd(a, b) > 1 but neither rad(a) | b nor rad(b) | a.
Define function f(x) = A379752 to be the cardinality of divisor pairs (d, x/d) that have quality Q. f(x) > 0 for x in A375055, otherwise f(x) = 0.

Examples

			Let s = A375055.
a(1) = 16 since s(1) = 60 = 6*10; 6 + 10 = 16.
a(2) = 20 since s(2) = 84 = 6*14; 6 + 14 = 20.
a(3) = 21 since s(3) = 90 = 6*15; 6 + 15 = 21.
a(4) = 48 since s(4) = 120 = 6*20 = 10*12; 6 + 20 + 10 + 12 = 48, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 540; rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Select[Range[nn], PrimeOmega[#] > PrimeNu[#] > 2 & ];
    Table[k = s[[n]];
      DivisorSum[k, # &,
        And[1 < GCD @@ {##},
          Nor[Divisible[#2, rad[#1] ],
              Divisible[#1, rad[#2] ] ] ] & @@
        {#, k/#} &], {n, Length[s]}]

A178212 Nonsquarefree numbers divisible by exactly three distinct primes.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2010

Keywords

Examples

			60 is in the sequence because it is not squarefree and it is divisible by three distinct primes: 2, 3, 5.
72 is not in the sequence, because although it is not squarefree, it is divisible by only two distinct primes: 2 and 3.
		

Crossrefs

A subsequence of A033987.
A085987 is a subsequence.
Subsequence of A375055, which differs starting at a(43) = 440 > A375055(43) = 420.

Programs

  • Haskell
    a178212 n = a178212_list !! (n-1)
    a178212_list = filter f [1..] where
       f x = length (a027748_row x) == 3 && any (> 1) (a124010_row x)
    -- Reinhard Zumkeller, Apr 03 2015
  • Mathematica
    nsD3Q[n_] := Block[{fi = FactorInteger@ n}, Length@ fi == 3 && Plus @@ Last /@ fi > 3]; Select[ Range@ 494, nsD3Q] (* Robert G. Wilson v, Feb 09 2012 *)
    Select[Range[500], PrimeNu[#] == 3 && PrimeOmega[#] > 3 &] (* Alonso del Arte, Mar 23 2015, based on a comment from Robert G. Wilson v, Feb 09 2012; requires Mathematica 7.0+ *)
  • PARI
    is_A178212(n)={ omega(n)==3 & bigomega(n)>3 }
    for(n=1,999,is_A178212(n) & print1(n",")) \\ M. F. Hasler, Feb 09 2012
    

Formula

A001221(a(n)) = 3; A001222(a(n)) > 3; A000005(n) >= 12;
a(n) = A123712(n) for n <= 52, possibly more.

A379097 Numbers that are not waterproof.

Original entry on oeis.org

60, 84, 120, 132, 156, 168, 204, 228, 240, 264, 276, 280, 300, 312, 315, 336, 348, 372, 408, 420, 440, 444, 456, 480, 492, 495, 516, 520, 528, 552, 560, 564, 585, 588, 600, 616, 624, 630, 636, 660, 672, 680, 693, 696, 708, 728, 732, 744, 760, 765, 780, 804, 816
Offset: 1

Views

Author

Peter Luschny, Dec 16 2024

Keywords

Comments

Zero and one are waterproof numbers by convention. Numbers that admit a prime factorization are not waterproof if their water capacity is > 0. (The water capacity of a number is defined in A275339.)
Proper subset of A375055, in turn a proper subset of A126706, since A001221(a(n)) >= 3 and a maximum multiplicity is required for at least one prime power factor, so as to have positive water capacity. - Michael De Vlieger, Dec 18 2024

Crossrefs

Programs

  • Maple
    # The function 'water_capacity' is defined in A275339.
    is_not_waterproof := n -> ifelse(n < 2, false, is(water_capacity(n) <> 0)):
    select(is_not_waterproof, [seq(0..820)]);
  • Mathematica
    nn = 816;
    s = Select[Range[nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    Select[s, Function[f, And[NoneTrue[{Sort[f], ReverseSort[f]}, # == f &],
      Total[(f //. {a___, b_, c__, d_, e___} /;
        AllTrue[{c}, And[# < b, # < d] &] :>
        {a, b, Sequence @@ Table[Min[b, d], {Length[{c}]}], d, e}) - f] > 0] ]
    [Power @@@ FactorInteger[#]] &] (* Michael De Vlieger, Dec 18 2024, after Jean-François Alcover at A275339 *)
  • Python
    # The function 'WaterCapacity' is defined in A275339.
    print([n for n in range(818) if WaterCapacity(n) > 0])

A379336 Numbers k such that there exists a divisor pair (d, d/k) such that one neither divides nor is coprime to the other.

Original entry on oeis.org

24, 40, 48, 54, 56, 60, 72, 80, 84, 88, 90, 96, 104, 108, 112, 120, 126, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 198, 200, 204, 208, 216, 220, 224, 228, 232, 234, 240, 248, 250, 252, 260, 264, 270, 272, 276, 280, 288, 294
Offset: 1

Views

Author

Michael De Vlieger, Dec 24 2024

Keywords

Comments

Both divisors d and d/k are composite, since primes p either divide or are coprime to another number, and all numbers smaller than p are coprime to p.
Proper subset of A126706; contains A378769, which in turn contains A378984.
Consider composite k, m, k != m. Define a "neutral" relation to be such that 1 < gcd(k,m) and not equal to either k or m. Then neither k nor m divides the other, and k and m are not coprime. If k is neutral to m, then m is neutral to k, since order does not matter. Then either the squarefree kernel of one divides the other or it does not. Thus, there are 3 kinds of neutral relation:
Type A: Though gcd(k,m) > 1, k has a factor P that does not divide m, and m has a factor Q that does not divide k.
Type B: rad(k) = rad(m), yet neither k divides m nor m divides k, where rad = A007947 is the squarefree kernel.
Type C: Squarefree kernel of one number divides the other, while the other has a factor that does not divide the former.
A378769, subset of this sequence, contains numbers k that have all 3 types of neutral relation between at least 1 divisor pair (d, k/d) for each.

Examples

			a(1) = 24 = 2^3 * 3 = 4*6, both composite; gcd(4,6) = 2, 4 does not divide 6 (type C).
a(2) = 40 = 2^3 * 5 = 4*10, gcd(4,10) = 2 (type C).
a(3) = 48 = 2^4 * 3 = 6*8, gcd(6,8) = 2 (type C).
a(6) = 60 = 2^2 * 3 * 5 = 6*10, gcd(6,10) = 2 (type A).
a(12) = 96 = 2^5 * 3 = 6*16 = 8*12, both type C.
a(38) = 216 = 2^3 * 3^3 = 4*54 (type C) = 9*24 (type C) = 12*18 (type B)
a(1605) = 5400 = 2^3 * 3^3 * 5^2 = 4*1350 (type C) = 24*225 (type A) = 60*90 (type B) = A378769(1).
a(10475) = 32400 = 2^4 * 3^4 * 5^2 = 8*4050 (type C) = 48*675 (type A) = 120*270 (type B) = A378984(1) = A378769(14), etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 300; mm = Floor@ Sqrt[nn]; p = 2; q = 3;
    Complement[
      Select[Range[nn], And[#2 > #1 > 1, #2 > 3] & @@ {PrimeNu[#], PrimeOmega[#]} &],
      Union[Reap[
        While[p <= mm, q = NextPrime[p];
          While[p*q <= mm, If[p != q, Sow[p*q]]; q = NextPrime[q]];
            p = NextPrime[p] ] ][[-1, 1]] ]^2 ]

Formula

This sequence is A376271 \ A085986 = {k : bigomega(k) > omega(k) > 1, bigomega(k) > 3} \ { k^2 : bigomega(k) = omega(k) = 2 }, where bigomega = A001222 and omega = A001221.
Union of A375055, A376936, and A378767.

A378984 Squares in A378769.

Original entry on oeis.org

32400, 63504, 90000, 129600, 156816, 202500, 219024, 254016, 291600, 345744, 360000, 374544, 467856, 490000, 518400, 571536, 627264, 685584, 777924, 810000, 876096, 960400, 1016064, 1089936, 1166400, 1210000, 1245456, 1382976, 1411344, 1440000, 1498176, 1587600
Offset: 1

Views

Author

Michael De Vlieger, Dec 15 2024

Keywords

Comments

Let omega = A001221, bigomega = A001222, and rad = A007947.
Numbers k that have all types of divisor pairs (d, k/d), d | k, that are listed in both A378769 and A378900. These are listed below:
Type A*: (Nontrivial) unitary divisor pairs, i.e., d coprime to k/d. The rest of the types are in cototient.
Type B*: gcd(d, k/d) > 1, rad(d) !| k/d, rad(k/d) !| d. These exist for k in A375055.
Type C: d < k/d, d | k/d but rad(k/d) !| d. Implies rad(k/d) = rad(k) and omega(d) < omega(k/d). These exist for k in A126706.
Type D: Either rad(d) | k/d, rad(k/d) !| d or vice versa. These exist for k in A378767.
Type E*: d = k/d = sqrt(k).
Type F: rad(d) = rad(k/d) = rad(k), d < k/d, d | k/d. These exist for k in A320966.
Type G*: rad(d) = rad(k/d) = rad(k), neither d | k/d nor k/d | d. These exist for k in A376936.
Asterisks denote symmetric types.
Since numbers d and k/d are either coprime or not, and if not, the squarefree kernel of one either divides the other or not, and if so, d divides k/d or not, and if so, d = k/d or not, there are no other types.
Smallest odd term is a(45) = 2480625.
Square roots not A350372: sqrt(810000) = 900 is not in A350372.

Examples

			a(1) = 32400 = 2^4 * 3^4 * 5^2 has the following divisor pair types:
  Type A: 16 * 2025, Type B: 48 * 675, Type C: 2 * 16200, Type D: 8 * 4050
  Type E: 180 * 180, Type F: 30 * 1080, Type G: 120 * 270.
a(2) = 63504 = 2^4 * 3^4 * 7^2 has the following divisor pair types:
  Type A: 16 * 3969, Type B: 48 * 1323, Type C: 2 * 31752, Type D: 8 * 7938
  Type E: 252 * 252, Type F: 42 * 1512, Type G: 168 * 378.
a(3) = 90000 = 2^4 * 3^2 * 5^4 has the following divisor pair types:
  Type A: 9 * 10000, Type B: 18 * 5000, Type C: 2 * 45000, Type D: 8 * 11250
  Type E: 300 * 300, Type F: 30 * 3000, Type G: 120 * 750, etc.
		

Crossrefs

Programs

  • Mathematica
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^21],  IntegerQ@ Sqrt[#] &];
    t = Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Select[t, PrimeOmega[#] > PrimeNu[#] > 2 &]

Formula

This sequence is { k = s^2 : rad(k)^2 | k,
bigomega(k) > omega(k) > 2, p^3 | k and q^3 | k for distinct primes p, q }.
Intersection of A378769 and A378900.
Intersection of A000290, A375055, and A376936.
Sum_{n>=1} = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} (1/(p^4-1))) - ((Sum_{p prime} (1/(p^2*(p^2-1))))^2 - Sum_{p prime} (1/(p^4*(p^2-1)^2)))/2 = 0.00015490158528995570146... . - Amiram Eldar, Dec 21 2024

A376687 Numbers that set records in in A376281.

Original entry on oeis.org

24, 96, 120, 240, 360, 480, 840, 1080, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 10080, 15120, 27720, 30240, 55440, 60480, 83160, 110880, 151200, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 831600, 997920, 1330560, 1441440, 1663200, 2162160, 2882880
Offset: 1

Views

Author

Michael De Vlieger, Jan 08 2025

Keywords

Comments

Proper subset of the intersection A025487 and A379336.
There are three kinds of pairs (d, k/d), d | k, such that gcd(d, k/d) does not equal 1, d, or k/d:
Type A: rad(d) does not divide k/d, and rad(k/d) does not divide d (see A379752), where rad = A007947.
Type B: the squarefree kernel of one divisor divides the other but the reverse is not true (see A379772).
Type C: rad(d) = rad(k/d), i.e., d, k/d, and k are coreful (see A379552).
Conjecture: Numbers k that set records in A376281 do not have type C divisor pairs, i.e., those that are coreful but neither divides the other. This, since type C requires k to be powerful and divisible by cubes of 2 distinct primes (i.e., in A376936). Therefore the record is achieved only through large numbers of type A and B.
Since type A divisor pairs are common for composite k in A375055, this sequence is resembles A379752.
Since d and k/d are both composite, this sequence resembles A059992.
This sequence, to a lesser extent A379752, and a greater extent A059992, contains many highly composite numbers. (See plot of S(n) = union of this sequence and A002182 below, and corresponding graphs in respective other sequences.)

Examples

			Let b(n) = A376281(n).
Table showing exponents of prime power factors of a(n) for n = 1..20.
Example: a(5) = 360 = 2^3 * 3^2 * 5, hence we write "3.2.1".
   n    a(n)  Exp.   b(a(n))
  ----------------------------------
   1     24 *   3.1        1   4*6
   2     96     5.1        2   6*16 = 8*12
   3    120 **  3.1.1      3   4*30 = 6*20 = 10*12
   4    240 *   4.1.1      4   6*40 = 8*30 = 10*24 = 12*20
   5    360 **  3.2.1      5   4*90 = 10*36 = 12*30 = 15*24 = 18*20
   6    480     5.1.1      6   6*80 = 8*60 = 10*48 = 12*40 = 16*30 = 20*24
   7    840 *   3.1.1.1    7
   8   1080     3.3.1      9
   9   1680 *   4.1.1.1   10
  10   2160     4.3.1     11
  11   2520 **  3.2.1.1   13
  12   3360     5.1.1.1   14
*  = a(n) is highly composite (in A002182),
** = a(n) is superior highly composite (in both A002182 and A002201).
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not@*SquareFreeQ];
    nn = Length[s]; Print[nn]
    Reap[Monitor[
      Do[k = s[[i]];
        If[# > r, r = #; Sow[k]] &@
          Count[Transpose@{#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
            _?(And[1 < GCD @@ {##}, Mod[#1, #2] != 0,
               Mod[#2, #1] != 0] & @@ # &)], {i, nn}], i] ][[-1, 1]]

A379753 Numbers that set records in A379752.

Original entry on oeis.org

60, 120, 240, 480, 840, 1260, 1680, 2520, 3360, 5040, 7560, 10080, 15120, 20160, 27720, 36960, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 443520, 498960, 554400, 665280, 720720, 997920, 1081080, 1330560, 1441440, 2162160, 2882880, 3603600, 4324320, 5765760
Offset: 1

Views

Author

Michael De Vlieger, Jan 01 2025

Keywords

Comments

Proper subset of the intersection of A025487 and A375055.
Conjecture: subset of A332785 = A126706 \ A286708.
This sequence seems to be rich in highly composite numbers, the prime shape of a(n) resembles that of highly composite numbers, with long tails of large prime factors with multiplicity 1.
Terms not in A002182 are not all of the form 2^5 * prime(i..j), 1 < i < j, for example, a(24) = 443520 = 2^7 * 3^2 * 5 * 7 * 11.

Examples

			Let b(n) = A379752(n).
Table showing exponents of prime power factors of a(n) for n = 1..12.
Example: a(6) = 1260 = 2^2 * 3^2 * 5 * 7, hence we write "2.2.1.1".
   n      a(n)       Exp.    b(a(n))
  ----------------------------------
   1       60 **   2.1.1        1   6*10
   2      120 **   3.1.1        2   6*20 = 10*12
   3      240 *    4.1.1        3   6*40 = 10*24 = 12*20
   4      480      5.1.1        4   6*80 = 10*48 = 12*40 = 20*24
   5      840 *    3.1.1.1      6   6*140 = 10*84 = 12*70 = 14*60 = 20*42 = 28*30
   6     1260 *    2.2.1.1      7
   7     1680 *    4.1.1.1      9
   8     2520 **   3.2.1.1     11
   9     3360      5.1.1.1     12
  10     5040 **   4.2.1.1     15
  11     7560 *    3.3.1.1     16
  12    10080 *    5.2.1.1     19
*  = a(n) is highly composite (in A002182),
** = a(n) is superior highly composite (in both A002182 and A002201).
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0;
    s = Select[Union@ Flatten@ f[14][[4 ;; -1]], Not@*SquareFreeQ];
    nn = Length[s]; Print[nn];
    Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
           Nor[Divisible[#2, rad[#1]],
               Divisible[#1, rad[#2]] ] ] & @@ # &)], {i, nn}] ][[-1, 1]]

A380432 Numbers k such that bigomega(k) > omega(k) > 3.

Original entry on oeis.org

420, 630, 660, 780, 840, 924, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1320, 1380, 1386, 1428, 1470, 1530, 1540, 1560, 1596, 1638, 1650, 1680, 1710, 1716, 1740, 1820, 1848, 1860, 1890, 1932, 1950, 1980, 2040, 2070, 2100, 2142, 2184, 2220, 2244, 2280, 2340, 2380
Offset: 1

Views

Author

Michael De Vlieger, Jan 29 2025

Keywords

Comments

A200521 is a proper subset; a(144) = 4620 is not contained in A200521; A200521(144) = 4650.
Subset of A375055, which is in turn a subset of A126706.

Examples

			Table of select a(n) showing exponents listed in columns of primes written vertically in the heading. For p^0 we instead write "." for clarity:
              Exponent of prime
                     1 1 1 1
   n   a(n)   2 3 5 7 1 3 7 9
  -----------------------------
    1    420   2 1 1 1
    2    630   1 2 1 1
    3    660   2 1 1 . 1
    4    780   2 1 1 . . 1
    5    840   3 1 1 1
    6    924   2 1 . 1 1
    7    990   1 2 1 . 1
    8   1020   2 1 1 . . . 1
    9   1050   1 1 2 1
   10   1092   2 1 . 1 . 1
   11   1140   2 1 1 . . . . 1
   12   1170   1 2 1 . . 1
  144   4620   2 1 1 1 1
  190   5460   2 1 1 1 . 1
  275   6930   1 2 1 1 1
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], PrimeOmega[#] > PrimeNu[#] > 3 &]
Showing 1-10 of 10 results.