cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A085987 Product of exactly four primes, three of which are distinct (p^2*q*r).

Original entry on oeis.org

60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726
Offset: 1

Views

Author

Alford Arnold, Jul 08 2003

Keywords

Comments

A014613 is completely determined by A030514, A065036, A085986, A085987 and A046386 since p(4) = 5. (cf. A000041). More generally, the first term of sequences which completely determine the k-almost primes can be found in A036035 (a resorted version of A025487).
A050326(a(n)) = 4. - Reinhard Zumkeller, May 03 2013

Examples

			a(1) = 60 since 60 = 2*2*3*5 and has three distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2}; Select[Range[2000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    pefp[{a_,b_,c_}]:={a^2 b c,a b^2 c,a b c^2}; Module[{upto=800},Select[ Flatten[ pefp/@Subsets[Prime[Range[PrimePi[upto/6]]],{3}]]//Union,#<= upto&]] (* Harvey P. Dale, Oct 02 2018 *)
  • PARI
    list(lim)=my(v=List(),t,x,y,z);forprime(p=2,lim^(1/4),t=lim\p^2;forprime(q=p+1,sqrtint(t),forprime(r=q+1,t\q,x=p^2*q*r;y=p*q^2*r;listput(v,x);if(y<=lim,listput(v,y);z=p*q*r^2;if(z<=lim,listput(v,z))))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    is(n)=vecsort(factor(n)[,2]~)==[1,1,2] \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A085987(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**2)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,4)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

More terms from Reinhard Zumkeller, Jul 25 2003

A033987 Numbers that are divisible by at least 4 primes (counted with multiplicity).

Original entry on oeis.org

16, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 225, 228, 232, 234, 240, 243
Offset: 1

Views

Author

Keywords

Comments

Complement of A037144: A001222(a(n)) > 3; A117358(a(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that no permutation of all proper divisors exists with coprime adjacent elements: A178254(a(n)) = 0. - Reinhard Zumkeller, May 24 2010
Also, numbers that can be written as a product of at least two composites, i.e., admit a nontrivial factorization into composites. - Felix Fröhlich, Dec 22 2018

Crossrefs

Subsequence of A033942; A178212 is a subsequence.

Programs

  • Maple
    with(numtheory): A033987:=n->`if`(bigomega(n)>3, n, NULL): seq(A033987(n), n=1..300); # Wesley Ivan Hurt, May 26 2015
  • Mathematica
    Select[Range[300],PrimeOmega[#]>3&] (* Harvey P. Dale, Mar 20 2016 *)
  • PARI
    is(n)=bigomega(n)>3 \\ Charles R Greathouse IV, May 26 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A033987(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i >= 4.
A001055(a(n)) > A033273(a(n)). - Juri-Stepan Gerasimov, Nov 09 2009
a(n) ~ n. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Patrick De Geest, Jun 15 1998

A375055 Nonsquarefree numbers k divisible by at least 3 distinct primes.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Michael De Vlieger, Oct 22 2024

Keywords

Comments

Also, numbers k such that there exists a pair of necessarily composite divisors {d, k/d}, d < k/d, with quality Q, i.e., gcd(d, k/d) > 1 but there exists a prime p | d that does not divide k/d, and also a prime q | k/d that does not divide d.
A178212 is a proper subset.
This sequence is distinct from A123712 since 420 is here.
This sequence is distinct from A182855 since 360 is here.

Examples

			a(1) = 60 = 2^2 * 3 * 5, the smallest number such that bigomega(60) > omega(60) > 2. Bigomega(60) = 4, omega(60) = 3.
72 is not in the sequence because it is the product of 2 distinct prime factors.
a(2) = 84 = 2^2 * 3 * 7, since bigomega(84) = 4, omega(84) = 3.
a(3) = 90 = 2 * 3^2 * 5, since bigomega(90) = 4, omega(90) = 3.
a(4) = 120 = 2^3 * 3 * 5, since bigomega(120) = 5, omega(120) = 3.
210 is not in the sequence because it is squarefree.
a(35) = 360 = 2^3 * 3^2 * 5 since bigomega(360) = 6, omega(360) = 3.
a(43) = 420 = 2^2 * 3 * 5 * 7 since bigomega(420) = 5, omega(420) = 4, etc.
.
Table showing pairs of factors of a(n) for select n, such that the pair possesses quality Q (see comments).
    n    a(n)   pair of factors with quality Q.
  -------------------------------------------------------------------
    1     60    6 X 10;
    2     84    6 X 14;
    3     90    6 X 15;
    4    120    6 X 20,  10 X 12;
    5    126    6 X 21;
    6    132    6 X 22;
    7    140   10 X 14;
    8    150   10 X 15;
   17    240    6 X 40,  10 X 24, 12 X 20;
   51    480    6 X 80,  10 X 48, 12 X 40, 20 X 24;
  117    840    6 X 140, 10 X 84, 12 X 70, 14 X 60, 20 X 42, 28 X 30.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 2 &]

Formula

{a(n)} = { k : bigomega(k) > omega(k) > 2 }, where bigomega = A001222 and omega = A001221.

A123712 Indices n such that 16 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
a(n) = A178212(n) for n <= 52, possibly more. [Reinhard Zumkeller, May 24 2010]
a(n) = A178212(n) for n <= 2000. - Bill McEachen, Jul 14 2024

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] := Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[6500], A123709[#] == 16 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    is(n)=my(M=matrix(n, n, r, c,r\c)^-1); sum(k=1, n, M[n, k]!=0)==16 \\ Charles R Greathouse IV, Feb 09 2012

A200511 Numbers n with omega(n)=2 and bigomega(n)>2, where omega=A001221=number of distinct prime factors, bigomega=A001222=prime factors counted with multiplicity.

Original entry on oeis.org

12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224, 225, 232, 236
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2012

Keywords

Comments

Equivalently, numbers of the form n=p^k*q^m where k,m>0, k+m>2 and p,q prime.
It appears that this is equal to A123711.

Crossrefs

Programs

  • Mathematica
    Select[Range[240], PrimeNu[#] == 2 && PrimeOmega[#] > 2 &] (* Jean-François Alcover, Jun 29 2013 *)
  • PARI
    for(n=1,999,bigomega(n)>2 & omega(n)==2 & print1(n","))

A200521 Numbers n such that omega(n)=4 but bigomega(n)>4, i.e., having exactly 4 distinct prime factors, but at least one of these with multiplicity > 1.

Original entry on oeis.org

420, 630, 660, 780, 840, 924, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1320, 1380, 1386, 1428, 1470, 1530, 1540, 1560, 1596, 1638, 1650, 1680, 1710, 1716, 1740, 1820, 1848, 1860, 1890, 1932, 1950, 1980, 2040, 2070, 2100, 2142, 2184, 2220, 2244
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2012

Keywords

Comments

I expect that A123709(a(k))=32.

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], PrimeNu[#] == 4 && PrimeOmega[#] > 4 &](* Jean-François Alcover, Jun 30 2013 *)
  • PARI
    is_A200521(n,c=4)={ omega(n)==c & bigomega(n)>c }
Showing 1-6 of 6 results.