cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A014613 Numbers that are products of 4 primes.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 210, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 330, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A033987, A114106 (number of 4-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), this sequence (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[200], Plus @@ Last /@ FactorInteger[ # ] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[400], PrimeOmega[#] == 4&] (* Jean-François Alcover, Jan 17 2014 *)
  • PARI
    isA014613(n) = bigomega(n)==4 \\ Michael B. Porter, Dec 13 2009
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 4
    print([k for k in range(377) if ok(k)]) # Michael S. Branicky, Nov 19 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014613(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024

Formula

Product p_i^e_i with Sum e_i = 4.
a(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, May 04 2013
a(n) = A078840(4,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998

A033942 Positive integers with at least 3 prime factors (counted with multiplicity).

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Keywords

Comments

A001055(a(n)) > 2; e.g., for a(3)=18 there are 4 factorizations: 1*18 = 2*9 = 2*3*3 = 3*6. - Reinhard Zumkeller, Dec 29 2001
A001222(a(n)) > 2; A054576(a(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that no permutation of all divisors exists with coprime adjacent elements: A109810(a(n))=0. - Reinhard Zumkeller, May 24 2010
A211110(a(n)) > 3. - Reinhard Zumkeller, Apr 02 2012
A060278(a(n)) > 0. - Reinhard Zumkeller, Apr 05 2013
Volumes of rectangular cuboids with each side > 1. - Peter Woodward, Jun 16 2015
If k is a term then so is k*m for m > 0. - David A. Corneth, Sep 30 2020
Numbers k with a pair of proper divisors of k, (d1,d2), such that d1 < d2 and gcd(d1,d2) > 1. - Wesley Ivan Hurt, Jan 01 2021

Crossrefs

Cf. A014612.
A101040(a(n))=0.
A033987 is a subsequence; complement of A037143. - Reinhard Zumkeller, May 24 2010
Subsequence of A080257.
See also A002808 for 'Composite numbers' or 'Divisible by at least 2 primes'.

Programs

  • Haskell
    a033942 n = a033942_list !! (n-1)
    a033942_list = filter ((> 2) . a001222) [1..]
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Maple
    with(numtheory): A033942:=n->`if`(bigomega(n)>2, n, NULL): seq(A033942(n), n=1..200); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Select[ Range[150], Plus @@ Last /@ FactorInteger[ # ] > 2 &] (* Robert G. Wilson v, Oct 12 2005 *)
    Select[Range[150],PrimeOmega[#]>2&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    is(n)=bigomega(n)>2 \\ Charles R Greathouse IV, May 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) > 2
    print([k for k in range(145) if ok(k)]) # Michael S. Branicky, Sep 10 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A033942(n):
        def f(x): return int(n+primepi(x)+sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Numbers of the form Product p_i^e_i with Sum e_i >= 3.
a(n) ~ n. - Charles R Greathouse IV, May 04 2013

Extensions

Corrected by Patrick De Geest, Jun 15 1998

A037144 Numbers with at most 3 prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Complement of A033987: A001222(a(n))<=3; A117358(a(n))=1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that exist permutations of all proper divisors only with coprime adjacent elements: A178254(a(n))>0. - Reinhard Zumkeller, May 24 2010

Crossrefs

A037143 is a subsequence.

Programs

  • Magma
    [ n: n in [1..86] | n eq 1 or &+[ t[2]: t in Factorization(n) ] le 3 ]; /* Klaus Brockhaus, Mar 20 2007 */
    
  • Mathematica
    Select[Range[100],PrimeOmega[#]<4&] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    is(n)=bigomega(n)<4 \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A037144(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-2-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Reinhard Zumkeller, Mar 10 2006
More terms from Klaus Brockhaus, Mar 20 2007

A178254 Number of permutations of the proper divisors of n such that no adjacent elements have a common divisor greater than 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 2, 2, 6, 1, 4, 1, 6, 6, 0, 1, 4, 1, 4, 6, 6, 1, 0, 2, 6, 2, 4, 1, 36, 1, 0, 6, 6, 6, 0, 1, 6, 6, 0, 1, 36, 1, 4, 4, 6, 1, 0, 2, 4, 6, 4, 1, 0, 6, 0, 6, 6, 1, 0, 1, 6, 4, 0, 6, 36, 1, 4, 6, 36, 1, 0, 1, 6, 4, 4, 6, 36, 1, 0, 0, 6, 1, 0, 6, 6, 6, 0, 1, 0, 6, 4, 6, 6, 6, 0, 1, 4, 4, 0, 1, 36, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2010

Keywords

Comments

Depends only on prime signature;
range = {0, 1, 2, 4, 6, 36};
a(A033987(n)) = 0; a(A037144(n)) > 0;
a(A008578(n))=1; a(A168363(n))=2; a(A054753(n))=4; a(A006881(n))=6; a(A007304(n))=36.

Examples

			Proper divisors for n=21 are: 1, 3, and 7:
a(39) = #{[1,3,7], [1,7,3], [3,1,7], [3,7,1], [7,1,3], [7,3,1]} = 6;
proper divisors for n=12 are: 1, 2, 3, 4, and 6:
a(12) = #{[2,3,4,1,6], [4,3,2,1,6], [6,1,2,3,4], [6,1,4,3,2]} = 4;
proper divisors for n=42: 1, 2, 3, 6, 7, 14, and 21:
a(42) = #{[2,21,1,6,7,3,14], [2,21,1,14,3,7,6], [3,14,1,6,7,2,21], [3,14,1,21,2,7,6], [6,1,14,3,7,2,21], [6,1,21,2,7,3,14], ...} = 36, see the appended file for the list of all permutations.
		

Crossrefs

Cf. A109810.

A046304 Divisible by at least 5 primes (counted with multiplicity).

Original entry on oeis.org

32, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 336, 352, 360, 368, 378, 384, 392, 396, 400, 405, 408, 416, 420, 432, 440, 448, 450, 456
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987.
Cf. A014614.

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[#]>4&] (* Harvey P. Dale, Apr 16 2013 *)
  • PARI
    is(n)=bigomega(n)>4 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A046304(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def almostprimepi(n, k):
            if k==0: return int(n>=1)
            def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
        def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5))
        return bisection(f,n,n) # Chai Wah Wu, Mar 29 2025

Formula

Product p_i^e_i with Sum e_i >= 5.
a(n) = n + O(n (log log n)^3/log n). - Charles R Greathouse IV, Apr 07 2017

A117358 a(n) = A032742(A032742(A032742(n))) = ((n/lpf(n))/lpf(n/lpf(n)))/lpf((n/lpf(n))/lpf(n/lpf(n))), where lpf=A020639, least prime factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 5, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 10, 3, 1, 1, 7, 1, 1, 1, 11, 1, 5, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A032742(A032742(A032742(n))) = A032742(A054576(n)) = A054576(n)/A115561(n).
a(A037144(n)) = 1, a(A033987(n)) > 1.

A178212 Nonsquarefree numbers divisible by exactly three distinct primes.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2010

Keywords

Examples

			60 is in the sequence because it is not squarefree and it is divisible by three distinct primes: 2, 3, 5.
72 is not in the sequence, because although it is not squarefree, it is divisible by only two distinct primes: 2 and 3.
		

Crossrefs

A subsequence of A033987.
A085987 is a subsequence.
Subsequence of A375055, which differs starting at a(43) = 440 > A375055(43) = 420.

Programs

  • Haskell
    a178212 n = a178212_list !! (n-1)
    a178212_list = filter f [1..] where
       f x = length (a027748_row x) == 3 && any (> 1) (a124010_row x)
    -- Reinhard Zumkeller, Apr 03 2015
  • Mathematica
    nsD3Q[n_] := Block[{fi = FactorInteger@ n}, Length@ fi == 3 && Plus @@ Last /@ fi > 3]; Select[ Range@ 494, nsD3Q] (* Robert G. Wilson v, Feb 09 2012 *)
    Select[Range[500], PrimeNu[#] == 3 && PrimeOmega[#] > 3 &] (* Alonso del Arte, Mar 23 2015, based on a comment from Robert G. Wilson v, Feb 09 2012; requires Mathematica 7.0+ *)
  • PARI
    is_A178212(n)={ omega(n)==3 & bigomega(n)>3 }
    for(n=1,999,is_A178212(n) & print1(n",")) \\ M. F. Hasler, Feb 09 2012
    

Formula

A001221(a(n)) = 3; A001222(a(n)) > 3; A000005(n) >= 12;
a(n) = A123712(n) for n <= 52, possibly more.

A046305 Numbers that are divisible by at least 6 primes (counted with multiplicity).

Original entry on oeis.org

64, 96, 128, 144, 160, 192, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448, 480, 486, 504, 512, 528, 540, 544, 560, 576, 600, 608, 624, 640, 648, 672, 704, 720, 729, 736, 756, 768, 784, 792, 800, 810, 816, 832, 840, 864, 880, 896
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987 and A046304.
Cf. A046306.

Programs

  • Mathematica
    Select[Range[1000],Total[Transpose[FactorInteger[#]][[2]]]>5&]  (* Harvey P. Dale, Jan 13 2011 *)
    Select[Range[1000],PrimeOmega[#]>5&] (* Harvey P. Dale, Apr 14 2019 *)
  • PARI
    is(n)=bigomega(n)>5 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A046305(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def almostprimepi(n, k):
            if k==0: return int(n>=1)
            def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
        def f(x): return n+1+sum(almostprimepi(x, k) for k in range(1, 6))
        return bisection(f, n, n) # Chai Wah Wu, Mar 29 2025

Formula

Product p_i^e_i with Sum e_i >= 6.
a(n) = n + O(n (log log n)^4/log n). - Charles R Greathouse IV, Apr 07 2017

Extensions

Offset corrected by Andrew Howroyd, Aug 13 2024

A107396 a(n) = binomial(n+5, 5) * binomial(n+7, 5).

Original entry on oeis.org

21, 336, 2646, 14112, 58212, 199584, 594594, 1585584, 3864861, 8744736, 18582564, 37425024, 71954064, 132838272, 236618172, 408282336, 684723501, 1119300336, 1787771370, 2795913120, 4289184900, 6464858400, 9587091150, 14005489680, 20177780805, 28697288256
Offset: 0

Views

Author

Zerinvary Lajos, May 25 2005

Keywords

Examples

			If n=0 then C(0+5,5)*C(0+7,5) = C(5,5)*C(7,5) = 1*21 = 21.
If n=9 then C(6+5,5)*C(6+7,5) = C(11,5)*C(13,5) = 462*1287 = 594594.
		

Crossrefs

Programs

  • Magma
    A107396:= func< n | Binomial(n+5,5)*Binomial(n+7,5) >;
    [A107396(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    a[n_] := Binomial[n + 5, 5] * Binomial[n + 7, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    a(n)={binomial(n+5, 5) * binomial(n+7, 5)} \\ Andrew Howroyd, Nov 08 2019
    
  • SageMath
    def A107396(n): return binomial(n+5,5)*binomial(n+7,5)
    print([A107396(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 350*Pi^2/3 - 82901/72.
Sum_{n>=0} (-1)^n/a(n) = 1975/24 - 25*Pi^2/3. (End)
G.f.: 21*(1 + 5*x + 5*x^2 + x^3)/(1-x)^11. - G. C. Greubel, Feb 09 2025

Extensions

a(7) corrected and terms a(15) and beyond from Andrew Howroyd, Nov 08 2019

A107397 a(n) = binomial(n+6, 6) * binomial(n+8, 6).

Original entry on oeis.org

28, 588, 5880, 38808, 194040, 792792, 2774772, 8588580, 24048024, 61941880, 148660512, 335785632, 719540640, 1472290848, 2891999880, 5477788008, 10042611348, 17877713700, 30988037080, 52423371000, 86736850200, 140610670200, 223698793500, 349748200620, 538074154800
Offset: 0

Views

Author

Zerinvary Lajos, May 25 2005

Keywords

Examples

			If n=0 then C(0+6,6)*C(0+8,6) = C(6,6)*C(8,6) = 1*28 = 28.
If n=6 then C(6+6,6)*C(6+8,6) = C(12,6)*C(14,6) = 924*3003 = 2774772.
		

Crossrefs

Programs

  • Magma
    A107397:= func< n | Binomial(n+6,6)*Binomial(n+8,6) >;
    [A107397(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    a[n_] := Binomial[n + 6, 6] * Binomial[n + 8, 6]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    a(n)={binomial(n+6, 6) * binomial(n+8, 6)} \\ Andrew Howroyd, Nov 08 2019
    
  • SageMath
    def A107397(n): return binomial(n+6,6)*binomial(n+8,6)
    print([A107397(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 720*Pi^2 - 1740989/245.
Sum_{n>=0} (-1)^n/a(n) = 6144*log(2)/7 - 149046/245. (End)
G.f.: 28*(1 + 8*x + 15*x^2 + 8*x^3 + x^4)/(1-x)^13. - G. C. Greubel, Feb 09 2025

Extensions

a(3) corrected and terms a(11) and beyond from Andrew Howroyd, Nov 08 2019
Showing 1-10 of 21 results. Next