A014613
Numbers that are products of 4 primes.
Original entry on oeis.org
16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 210, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 330, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, Math. Intell., Vol. 30, No. 2, Spring 2008.
- Eric Weisstein's World of Mathematics, Almost Prime.
Sequences listing r-almost primes, that is, the n such that
A001222(n) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3), this sequence (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20). -
Jason Kimberley, Oct 02 2011
-
Select[Range[200], Plus @@ Last /@ FactorInteger[ # ] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Select[Range[400], PrimeOmega[#] == 4&] (* Jean-François Alcover, Jan 17 2014 *)
-
isA014613(n) = bigomega(n)==4 \\ Michael B. Porter, Dec 13 2009
-
from sympy import factorint
def ok(n): return sum(factorint(n).values()) == 4
print([k for k in range(377) if ok(k)]) # Michael S. Branicky, Nov 19 2021
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A014613(n):
def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 17 2024
A033942
Positive integers with at least 3 prime factors (counted with multiplicity).
Original entry on oeis.org
8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1
See also
A002808 for 'Composite numbers' or 'Divisible by at least 2 primes'.
-
a033942 n = a033942_list !! (n-1)
a033942_list = filter ((> 2) . a001222) [1..]
-- Reinhard Zumkeller, Oct 27 2011
-
with(numtheory): A033942:=n->`if`(bigomega(n)>2, n, NULL): seq(A033942(n), n=1..200); # Wesley Ivan Hurt, Jun 23 2015
-
Select[ Range[150], Plus @@ Last /@ FactorInteger[ # ] > 2 &] (* Robert G. Wilson v, Oct 12 2005 *)
Select[Range[150],PrimeOmega[#]>2&] (* Harvey P. Dale, Jun 22 2011 *)
-
is(n)=bigomega(n)>2 \\ Charles R Greathouse IV, May 04 2013
-
from sympy import factorint
def ok(n): return sum(factorint(n).values()) > 2
print([k for k in range(145) if ok(k)]) # Michael S. Branicky, Sep 10 2022
-
from math import isqrt
from sympy import primepi, primerange
def A033942(n):
def f(x): return int(n+primepi(x)+sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
A037144
Numbers with at most 3 prime factors (counted with multiplicity).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86
Offset: 1
-
[ n: n in [1..86] | n eq 1 or &+[ t[2]: t in Factorization(n) ] le 3 ]; /* Klaus Brockhaus, Mar 20 2007 */
-
Select[Range[100],PrimeOmega[#]<4&] (* Harvey P. Dale, Oct 15 2015 *)
-
is(n)=bigomega(n)<4 \\ Charles R Greathouse IV, Sep 14 2015
-
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A037144(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n+x-2-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
A178254
Number of permutations of the proper divisors of n such that no adjacent elements have a common divisor greater than 1.
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 1, 2, 2, 6, 1, 4, 1, 6, 6, 0, 1, 4, 1, 4, 6, 6, 1, 0, 2, 6, 2, 4, 1, 36, 1, 0, 6, 6, 6, 0, 1, 6, 6, 0, 1, 36, 1, 4, 4, 6, 1, 0, 2, 4, 6, 4, 1, 0, 6, 0, 6, 6, 1, 0, 1, 6, 4, 0, 6, 36, 1, 4, 6, 36, 1, 0, 1, 6, 4, 4, 6, 36, 1, 0, 0, 6, 1, 0, 6, 6, 6, 0, 1, 0, 6, 4, 6, 6, 6, 0, 1, 4, 4, 0, 1, 36, 1
Offset: 1
Proper divisors for n=21 are: 1, 3, and 7:
a(39) = #{[1,3,7], [1,7,3], [3,1,7], [3,7,1], [7,1,3], [7,3,1]} = 6;
proper divisors for n=12 are: 1, 2, 3, 4, and 6:
a(12) = #{[2,3,4,1,6], [4,3,2,1,6], [6,1,2,3,4], [6,1,4,3,2]} = 4;
proper divisors for n=42: 1, 2, 3, 6, 7, 14, and 21:
a(42) = #{[2,21,1,6,7,3,14], [2,21,1,14,3,7,6], [3,14,1,6,7,2,21], [3,14,1,21,2,7,6], [6,1,14,3,7,2,21], [6,1,21,2,7,3,14], ...} = 36, see the appended file for the list of all permutations.
A046304
Divisible by at least 5 primes (counted with multiplicity).
Original entry on oeis.org
32, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 336, 352, 360, 368, 378, 384, 392, 396, 400, 405, 408, 416, 420, 432, 440, 448, 450, 456
Offset: 1
-
Select[Range[500],PrimeOmega[#]>4&] (* Harvey P. Dale, Apr 16 2013 *)
-
is(n)=bigomega(n)>4 \\ Charles R Greathouse IV, Sep 17 2015
-
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A046304(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def almostprimepi(n, k):
if k==0: return int(n>=1)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5))
return bisection(f,n,n) # Chai Wah Wu, Mar 29 2025
A117358
a(n) = A032742(A032742(A032742(n))) = ((n/lpf(n))/lpf(n/lpf(n)))/lpf((n/lpf(n))/lpf(n/lpf(n))), where lpf=A020639, least prime factor.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 5, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 10, 3, 1, 1, 7, 1, 1, 1, 11, 1, 5, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1
Offset: 1
-
f[n_] := n/FactorInteger[n][[1, 1]]; (* f is A032742 *)
a[n_] := f@ f@ f@ n;
Array[a, 100] (* Jean-François Alcover, Dec 09 2021 *)
Table[Nest[#/FactorInteger[#][[1,1]]&,n,3],{n,110}] (* Harvey P. Dale, Oct 10 2024 *)
-
(define (A117358 n) (A032742 (A032742 (A032742 n)))) ;; Antti Karttunen, Dec 07 2017
A178212
Nonsquarefree numbers divisible by exactly three distinct primes.
Original entry on oeis.org
60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1
60 is in the sequence because it is not squarefree and it is divisible by three distinct primes: 2, 3, 5.
72 is not in the sequence, because although it is not squarefree, it is divisible by only two distinct primes: 2 and 3.
Subsequence of
A375055, which differs starting at a(43) = 440 >
A375055(43) = 420.
-
a178212 n = a178212_list !! (n-1)
a178212_list = filter f [1..] where
f x = length (a027748_row x) == 3 && any (> 1) (a124010_row x)
-- Reinhard Zumkeller, Apr 03 2015
-
nsD3Q[n_] := Block[{fi = FactorInteger@ n}, Length@ fi == 3 && Plus @@ Last /@ fi > 3]; Select[ Range@ 494, nsD3Q] (* Robert G. Wilson v, Feb 09 2012 *)
Select[Range[500], PrimeNu[#] == 3 && PrimeOmega[#] > 3 &] (* Alonso del Arte, Mar 23 2015, based on a comment from Robert G. Wilson v, Feb 09 2012; requires Mathematica 7.0+ *)
-
is_A178212(n)={ omega(n)==3 & bigomega(n)>3 }
for(n=1,999,is_A178212(n) & print1(n",")) \\ M. F. Hasler, Feb 09 2012
A046305
Numbers that are divisible by at least 6 primes (counted with multiplicity).
Original entry on oeis.org
64, 96, 128, 144, 160, 192, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448, 480, 486, 504, 512, 528, 540, 544, 560, 576, 600, 608, 624, 640, 648, 672, 704, 720, 729, 736, 756, 768, 784, 792, 800, 810, 816, 832, 840, 864, 880, 896
Offset: 1
-
Select[Range[1000],Total[Transpose[FactorInteger[#]][[2]]]>5&] (* Harvey P. Dale, Jan 13 2011 *)
Select[Range[1000],PrimeOmega[#]>5&] (* Harvey P. Dale, Apr 14 2019 *)
-
is(n)=bigomega(n)>5 \\ Charles R Greathouse IV, Sep 17 2015
-
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A046305(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def almostprimepi(n, k):
if k==0: return int(n>=1)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
def f(x): return n+1+sum(almostprimepi(x, k) for k in range(1, 6))
return bisection(f, n, n) # Chai Wah Wu, Mar 29 2025
A107396
a(n) = binomial(n+5, 5) * binomial(n+7, 5).
Original entry on oeis.org
21, 336, 2646, 14112, 58212, 199584, 594594, 1585584, 3864861, 8744736, 18582564, 37425024, 71954064, 132838272, 236618172, 408282336, 684723501, 1119300336, 1787771370, 2795913120, 4289184900, 6464858400, 9587091150, 14005489680, 20177780805, 28697288256
Offset: 0
If n=0 then C(0+5,5)*C(0+7,5) = C(5,5)*C(7,5) = 1*21 = 21.
If n=9 then C(6+5,5)*C(6+7,5) = C(11,5)*C(13,5) = 462*1287 = 594594.
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
A107396:= func< n | Binomial(n+5,5)*Binomial(n+7,5) >;
[A107396(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
-
a[n_] := Binomial[n + 5, 5] * Binomial[n + 7, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
-
a(n)={binomial(n+5, 5) * binomial(n+7, 5)} \\ Andrew Howroyd, Nov 08 2019
-
def A107396(n): return binomial(n+5,5)*binomial(n+7,5)
print([A107396(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025
a(7) corrected and terms a(15) and beyond from
Andrew Howroyd, Nov 08 2019
A107397
a(n) = binomial(n+6, 6) * binomial(n+8, 6).
Original entry on oeis.org
28, 588, 5880, 38808, 194040, 792792, 2774772, 8588580, 24048024, 61941880, 148660512, 335785632, 719540640, 1472290848, 2891999880, 5477788008, 10042611348, 17877713700, 30988037080, 52423371000, 86736850200, 140610670200, 223698793500, 349748200620, 538074154800
Offset: 0
If n=0 then C(0+6,6)*C(0+8,6) = C(6,6)*C(8,6) = 1*28 = 28.
If n=6 then C(6+6,6)*C(6+8,6) = C(12,6)*C(14,6) = 924*3003 = 2774772.
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A107397:= func< n | Binomial(n+6,6)*Binomial(n+8,6) >;
[A107397(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
-
a[n_] := Binomial[n + 6, 6] * Binomial[n + 8, 6]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
-
a(n)={binomial(n+6, 6) * binomial(n+8, 6)} \\ Andrew Howroyd, Nov 08 2019
-
def A107397(n): return binomial(n+6,6)*binomial(n+8,6)
print([A107397(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025
a(3) corrected and terms a(11) and beyond from
Andrew Howroyd, Nov 08 2019
Showing 1-10 of 21 results.
Comments