A101638 Number of distinct 4-almost primes A014613 which are factors of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 1
Examples
a(96) = 2 because 96 = 16 * 6 hence divisible by the 4-almost prime 16 and also 96 = 24 * 4 hence divisible by the 4-almost prime 24.
References
- Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- E. A. Bender and J. R. Goldman, On the Applications of Moebius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, 789-803, 1975.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Moebius Transform.
Programs
-
PARI
a(n)=my(f=factor(n)[,2], v=apply(k->sum(i=1,#f,f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2],2) + v[2]*binomial(v[1]-1,2) + binomial(v[1],4) \\ Charles R Greathouse IV, Sep 14 2015
Comments