A160258 The entries of A033942, repeated for each different factorization into 3 factors larger than 1.
8, 12, 16, 18, 20, 24, 24, 27, 28, 30, 32, 32, 36, 36, 36, 40, 40, 42, 44, 45, 48, 48, 48, 48, 50, 52, 54, 54, 56, 56, 60, 60, 60, 60, 63, 64, 64, 64, 66, 68, 70, 72, 72, 72, 72, 72, 72, 75, 76, 78, 80, 80, 80, 80, 81, 84, 84, 84, 84, 88, 88, 90, 90, 90, 90, 92, 96, 96, 96, 96, 96, 96
Offset: 1
Keywords
Examples
For n=1, its mention of 8 is the sole mention because 2*2*2 is the sole distinct producing triple for 8. 2*2*2 is the 1st possible triple not using 1. At indices n=13 to 15, 3*3*4, 2*3*6, and 2*2*9 all give rise to 36.
References
- John H. Conway and Richard K. Guy, The book of numbers, Copernicus 1996, ISBN: 038797993X
- Peter Pearce and Susan Pearce, Polyhedra primer, Van Nostrand Reinhold, 1978, ISBN 0442264968.
Programs
-
Maple
A001222 := proc(n) numtheory[bigomega](n) ; end: isA033942 := proc(n) RETURN(A001222(n) >= 3) ; end: A160258rep := proc(a,minf) local c,d,f,ct ; c := [] ; for d in numtheory[divisors](a) do if d >= minf then if d = a then c := [op(c),[d]] ; ; else ct := A160258rep(a/d,d) ; for f in ct do c := [op(c),[d,op(f)] ] ; od: fi; fi; od: c; end: A160258 := proc(a) local c,r,f ; c := 0 ; r := A160258rep(a,2) ; for f in r do if nops(f) = 3 then c := c+1 ; fi; od: c ; end: for n from 1 to 120 do if isA033942(n) then mu := A160258(n) ; for m from 1 to mu do printf("%d,",n) ; od; fi; od: # R. J. Mathar, May 12 2009
Extensions
Edited and extended by R. J. Mathar, May 12 2009
Comments