cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A122180 Number of ways to write n as n = x*y*z with 1 < x < y < z < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2006

Keywords

Comments

x,y,z are distinct proper factors of n. See A122181 for n such that a(n) > 0.
If n has at most five divisors then a(n) = 0. - David A. Corneth, Oct 24 2024

Examples

			a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
		

Crossrefs

Programs

  • PARI
    for(n=1,105, t=0; for(x=2,n-1, for(y=x+1,n-1, for(z=y+1,n-1, if(x*y*z==n, t++)))); print1(t,", "))
    
  • PARI
    A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(xAntti Karttunen, Jul 08 2017
    
  • PARI
    a(n) = {
    	my(d = divisors(n));
    	if(#d <= 5, return(0));
    	my(res = 0, q);
    	for(i = 2, #d,
    		q = d[#d + 1 - i];
    		if(d[i]^2 > q,
    			return(res)
    		);
    		for(j = i + 1, #d,
    			qj = q/d[j];
    			if(qj <= d[j],
    				next(2)
    			);
    			if(denominator(qj) == 1 && n % qj == 0,
    				res++
    			);
    		);
    	);
    	res
    } \\ David A. Corneth, Oct 24 2024

Formula

a(n) = A200214(n)/6. - Antti Karttunen, Jul 08 2017

A122181 Numbers k that can be written as k = x*y*z with 1 < x < y < z (A122180(k) > 0).

Original entry on oeis.org

24, 30, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 165, 168, 170, 174, 176, 180, 182, 184, 186, 189, 190, 192, 195
Offset: 1

Views

Author

Rick L. Shepherd, Aug 24 2006

Keywords

Comments

Equivalently, numbers k with at least 7 divisors (A000005(k) > 6). Equivalently, numbers k with at least 5 proper divisors (A070824(k) > 4). Equivalently, numbers k such that i) k has at least three distinct prime factors (A000977), ii) k has two distinct prime factors and four or more total prime factors (k = p^j*q^m, p,q primes, j+m >= 4), or iii) k = p^m, a perfect power (A001597) but restricted to prime p and m >= 6 [= 1+2+3] (some terms of A076470).

Examples

			a(1) = 24 = 2*3*4, a product of three distinct proper divisors (omega(24) = 2, bigomega(24) = 4).
a(2) = 30 = 2*3*5, a product of three distinct prime factors (omega(30) = 3).
a(10) = 64 = 2*4*8 [= 2^1*2^2*2^3] (omega(64) = 1, bigomega(64) = 6).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], DivisorSigma[0, #] > 6 &] (* Amiram Eldar, Oct 05 2024 *)
  • PARI
    isok(n) = numdiv(n)>6
    
  • PARI
    isok(n) = (omega(n)==1 && bigomega(n)>5) || (omega(n)==2 && bigomega(n)>3) || (omega(n)>2)

A088434 Number of ways to write n as n = u*v*w with 1 <= u < v < w.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 4, 0, 2, 1, 1, 1, 4, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 3, 1, 4, 0, 2, 1, 4, 0, 8, 0, 1, 2, 2, 1, 4, 0, 6, 1, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 2, 2, 4, 0, 4, 0, 4, 4, 1, 0, 8, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n)=0 iff n=1 or n prime or n prime^2: a(A000430(n)) = 0.
The integers a(n)+1 equal A045778(n) for n < 120 and differ at all n that admit factorization into 4 or more distinct factors, the smallest ones being n = 120 = 2*3*4*5, n = 144 = 2*3*4*6, n = 168 = 2*3*4*7, n = 180 = 2*3*5*6, ..., later continuing n = 312 = 2*3*4*13, n = 320 = 2*4*5*8, n = 324 = 2*3*6*9, n = 330 = 2*3*5*11, ... Coincidentally, A068350(5) to A068350(19) start this list. - R. J. Mathar, Jul 19 2007

Examples

			n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6): therefore a(18)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Cases[Subsets[Divisors[n],{3}],{x_,y_,z_}->x*y*z],#==n &]],{n,102}] (* Jayanta Basu, May 23 2013 *)
  • PARI
    A088434(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

Extensions

Data section extended to 120 terms by Antti Karttunen, Aug 24 2017

A088432 Number of ways to write n as n = u*v*w with 1 <= u < v <= w.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 7, 1, 3, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 4, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 3, 2, 1, 4, 0, 6, 2, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 3, 2, 6, 0, 4, 0, 4, 4, 1, 0, 9, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Examples

			n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6), (2,3,3): therefore a(18)=3.
For n = p*q, p < q primes:  n = 1 * p * q, so a(n) = 1.
For n = p^2, p prime: n = 1 * p * p, so a(n) = 1.
For n = p^3, p prime: n = 1 * p * p^2, so a(n) = 1.
For n = p*q^2, p < q < p^2: n = 1 * p * pq = 1* q * p^2, so a(n) = 2 (see n=12).
For n = p*q^2, p < p^2 < q: n = 1 * p * pq = 1 * p^2 * q, so a(n) = 2
For n = p^4, p prime: n = 1 * p * p^3 = 1 * p^2 * p^2, so a(n) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = 0}, Do[Do[Do[If[u v w == n, s++], {w, v, n}], {v, u + 1, n - 1}], {u, Divisors[n]}]; s];
    Array[a, 120] (* Jean-François Alcover, Dec 10 2021, after Antti Karttunen *)
  • PARI
    A088432(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

Formula

a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0, a(A002808(n)) > 0.
a(n) = 1 iff n has 3 or 4 divisors (A323644) (see examples). - Bernard Schott, Dec 13 2021
a(n) = 2 if n = p^2*q, pA096156) or n = p^4 (A030514) (see examples). - Bernard Schott, Dec 16 2021

Extensions

Data section extended to 120 terms by Antti Karttunen, Aug 24 2017

A088433 Number of ways to write n as n = u*v*w with 1<=u<=v

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 1, 3, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 5, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 2, 5, 1, 9, 3, 2, 1, 10, 2, 2, 2, 6, 1, 10, 2, 4, 2, 2, 2, 12, 1, 3, 4, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n) = 1 iff n prime or n prime^2: a(A000430(n))=1.

Examples

			n=12: (1,1,12), (1,2,6), (1,3,4), (2,2,3): therefore a(12)=4;
n=18: (1,1,18), (1,2,9), (1,3,6): therefore a(18)=3.
		

Crossrefs

Programs

  • PARI
    A088433(n) = { my(s=0); fordiv(n, u, for(v=u, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

A321376 Expansion of Product_{1 < i <= j <= k} (1 - x^(i*j*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 1, 4, 0, 0, 0, 2, 0, -1, 1, 2, 0, 0, -1, 2, 1, -1, -1, -1, 0, -2, 0, -4, -1, 2, -2, -3, 0, -4, -4, -1, -1, -6, -2, -7, 0, 2, -2, -10
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 - x^k)^A122179(k).

A347709 Number of distinct rational numbers of the form x * z / y for some factorization x * y * z = n, 1 < x <= y <= z.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 1, 1, 0, 1, 0, 3, 1, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 1, 1, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2021

Keywords

Comments

This is also the number of distinct possible alternating products of length-3 factorizations of n, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)), and where a factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			Representative factorizations for each of the a(360) = 9 alternating products:
   (2,2,90) -> 90
   (2,3,60) -> 40
   (2,4,45) -> 45/2
   (2,5,36) -> 72/5
   (2,6,30) -> 10
   (2,9,20) -> 40/9
  (2,10,18) -> 18/5
  (2,12,15) -> 5/2
   (3,8,15) -> 45/8
		

Crossrefs

Allowing factorizations of any length <= 3 gives A033273.
Positions of positive terms are A033942.
Positions of 0's are A037143.
The length-2 version is A072670.
Allowing any length gives A347460, reverse A038548.
Allowing any odd length gives A347708.
A001055 counts factorizations (strict A045778, ordered A074206).
A122179 counts length-3 factorizations.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions, positive A276024.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],Length[#]==3&]]],{n,100}]
  • PARI
    A347709(n) = { my(rats=List([])); fordiv(n,z,my(yx=n/z); fordiv(yx, y, my(x = yx/y); if((y <= z) && (x <= y) && (x > 1), listput(rats,x*z/y)))); #Set(rats); }; \\ Antti Karttunen, Jan 29 2025

Extensions

More terms from Antti Karttunen, Jan 29 2025

A321374 Expansion of Product_{1 < i <= j <= k} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 1, 3, 0, 2, 0, 5, 0, 1, 1, 8, 0, 3, 1, 8, 0, 5, 1, 12, 2, 4, 2, 18, 0, 9, 3, 18, 2, 14, 3, 28, 3, 13, 5, 39, 2, 22, 10, 42, 5, 32, 8, 61, 8, 34, 14, 85, 7, 52, 22, 91, 14, 74, 20, 132, 24, 80
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A122179(k).

A321375 Expansion of Product_{1 < i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 5, 0, 1, 1, 4, 0, 2, 0, 9, 0, 2, 1, 12, 0, 3, 1, 16, 0, 7, 2, 20, 2, 6, 2, 36, 0, 13, 5, 37, 2, 21, 4, 60, 3, 23, 9, 80, 4, 35, 14, 106, 5, 58, 16, 137, 12, 66, 22, 210, 10, 100, 40, 238, 22, 147
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

Euler transform of A122179.
G.f.: Product_{k>0} 1/(1 - x^k)^A122179(k).

A334739 Number of unordered factorizations of n with 2 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 1, 3, 0, 3, 0, 5, 1, 1, 1, 6, 0, 1, 1, 5, 0, 3, 0, 3, 3, 1, 0, 8, 0, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 6, 0, 1, 3, 6, 1, 3, 0, 3, 1, 3, 0, 10, 0, 1, 3, 3, 1, 3, 0, 8, 2, 1, 0, 6, 1, 1, 1, 5, 0, 6, 1, 3, 1, 1, 1, 10, 0, 3, 3, 6
Offset: 1

Views

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
		

Crossrefs

Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778.

Programs

  • R
    maxe  <- function(n,d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n,l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0,1,0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n,d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i,l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj
          }
        }
        return(round(uh,3))
      }
    }
    n=100; l=2; sapply(1:n,uhRec,l)    # A334739
    n=100; l=3; sapply(1:n,uhRec,l)    # A334740

Formula

(Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.
Showing 1-10 of 12 results. Next