cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jacob Sprittulla

Jacob Sprittulla's wiki page.

Jacob Sprittulla has authored 2 sequences.

A334740 Number of unordered factorizations of n with 3 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1
Offset: 1

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g. a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(48) = 3 = #{ (6,4,2), (8,3,2), (4,3,2,2) }.
		

Crossrefs

Cf. A334739 (2 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778

Programs

  • R
    maxe  <- function(n, d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n, l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0, 1, 0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n, d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i, l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i, j) * uhj
          }
        }
        return(round(uh, 3))
      }
    }
    n=100; l=2; sapply(1:n, uhRec, l)    # A334739
    n=100; l=3; sapply(1:n, uhRec, l)    # A334740

A334739 Number of unordered factorizations of n with 2 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 1, 3, 0, 3, 0, 5, 1, 1, 1, 6, 0, 1, 1, 5, 0, 3, 0, 3, 3, 1, 0, 8, 0, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 6, 0, 1, 3, 6, 1, 3, 0, 3, 1, 3, 0, 10, 0, 1, 3, 3, 1, 3, 0, 8, 2, 1, 0, 6, 1, 1, 1, 5, 0, 6, 1, 3, 1, 1, 1, 10, 0, 3, 3, 6
Offset: 1

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
		

Crossrefs

Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778.

Programs

  • R
    maxe  <- function(n,d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n,l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0,1,0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n,d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i,l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj
          }
        }
        return(round(uh,3))
      }
    }
    n=100; l=2; sapply(1:n,uhRec,l)    # A334739
    n=100; l=3; sapply(1:n,uhRec,l)    # A334740

Formula

(Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.