cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A122181 Numbers k that can be written as k = x*y*z with 1 < x < y < z (A122180(k) > 0).

Original entry on oeis.org

24, 30, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 165, 168, 170, 174, 176, 180, 182, 184, 186, 189, 190, 192, 195
Offset: 1

Views

Author

Rick L. Shepherd, Aug 24 2006

Keywords

Comments

Equivalently, numbers k with at least 7 divisors (A000005(k) > 6). Equivalently, numbers k with at least 5 proper divisors (A070824(k) > 4). Equivalently, numbers k such that i) k has at least three distinct prime factors (A000977), ii) k has two distinct prime factors and four or more total prime factors (k = p^j*q^m, p,q primes, j+m >= 4), or iii) k = p^m, a perfect power (A001597) but restricted to prime p and m >= 6 [= 1+2+3] (some terms of A076470).

Examples

			a(1) = 24 = 2*3*4, a product of three distinct proper divisors (omega(24) = 2, bigomega(24) = 4).
a(2) = 30 = 2*3*5, a product of three distinct prime factors (omega(30) = 3).
a(10) = 64 = 2*4*8 [= 2^1*2^2*2^3] (omega(64) = 1, bigomega(64) = 6).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], DivisorSigma[0, #] > 6 &] (* Amiram Eldar, Oct 05 2024 *)
  • PARI
    isok(n) = numdiv(n)>6
    
  • PARI
    isok(n) = (omega(n)==1 && bigomega(n)>5) || (omega(n)==2 && bigomega(n)>3) || (omega(n)>2)

A122179 Number of ways to write n as n = x*y*z with 1

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 4, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 1, 3, 0, 1, 0, 1, 0, 1, 0, 6, 0, 0, 1, 1, 0, 1, 0, 4, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 6, 0, 1, 1, 3, 0, 1, 0, 2, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2006

Keywords

Comments

x,y,z are proper factors of n. a(n) > 0 iff n is a term of A033942; a(n) = 0 iff n is a term of A037143.

Examples

			a(24) = 2 because 24 = 2*2*6 = 2*3*4, two products of three proper factors of 24.
		

Crossrefs

Programs

  • PARI
    for(n=1,105, t=0; for(x=2,n-1, for(y=x,n-1, for(z=y,n-1, if(x*y*z==n, t++)))); print1(t,", "))
    
  • PARI
    A122179(n) = { my(s=0); fordiv(n, x, if((x>1)&&(xAntti Karttunen, Aug 24 2017

A088434 Number of ways to write n as n = u*v*w with 1 <= u < v < w.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 4, 0, 2, 1, 1, 1, 4, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 3, 1, 4, 0, 2, 1, 4, 0, 8, 0, 1, 2, 2, 1, 4, 0, 6, 1, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 2, 2, 4, 0, 4, 0, 4, 4, 1, 0, 8, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n)=0 iff n=1 or n prime or n prime^2: a(A000430(n)) = 0.
The integers a(n)+1 equal A045778(n) for n < 120 and differ at all n that admit factorization into 4 or more distinct factors, the smallest ones being n = 120 = 2*3*4*5, n = 144 = 2*3*4*6, n = 168 = 2*3*4*7, n = 180 = 2*3*5*6, ..., later continuing n = 312 = 2*3*4*13, n = 320 = 2*4*5*8, n = 324 = 2*3*6*9, n = 330 = 2*3*5*11, ... Coincidentally, A068350(5) to A068350(19) start this list. - R. J. Mathar, Jul 19 2007

Examples

			n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6): therefore a(18)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Cases[Subsets[Divisors[n],{3}],{x_,y_,z_}->x*y*z],#==n &]],{n,102}] (* Jayanta Basu, May 23 2013 *)
  • PARI
    A088434(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

Extensions

Data section extended to 120 terms by Antti Karttunen, Aug 24 2017

A088432 Number of ways to write n as n = u*v*w with 1 <= u < v <= w.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 7, 1, 3, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 4, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 3, 2, 1, 4, 0, 6, 2, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 3, 2, 6, 0, 4, 0, 4, 4, 1, 0, 9, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Examples

			n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6), (2,3,3): therefore a(18)=3.
For n = p*q, p < q primes:  n = 1 * p * q, so a(n) = 1.
For n = p^2, p prime: n = 1 * p * p, so a(n) = 1.
For n = p^3, p prime: n = 1 * p * p^2, so a(n) = 1.
For n = p*q^2, p < q < p^2: n = 1 * p * pq = 1* q * p^2, so a(n) = 2 (see n=12).
For n = p*q^2, p < p^2 < q: n = 1 * p * pq = 1 * p^2 * q, so a(n) = 2
For n = p^4, p prime: n = 1 * p * p^3 = 1 * p^2 * p^2, so a(n) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = 0}, Do[Do[Do[If[u v w == n, s++], {w, v, n}], {v, u + 1, n - 1}], {u, Divisors[n]}]; s];
    Array[a, 120] (* Jean-François Alcover, Dec 10 2021, after Antti Karttunen *)
  • PARI
    A088432(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

Formula

a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0, a(A002808(n)) > 0.
a(n) = 1 iff n has 3 or 4 divisors (A323644) (see examples). - Bernard Schott, Dec 13 2021
a(n) = 2 if n = p^2*q, pA096156) or n = p^4 (A030514) (see examples). - Bernard Schott, Dec 16 2021

Extensions

Data section extended to 120 terms by Antti Karttunen, Aug 24 2017

A088433 Number of ways to write n as n = u*v*w with 1<=u<=v

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 1, 3, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 5, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 2, 5, 1, 9, 3, 2, 1, 10, 2, 2, 2, 6, 1, 10, 2, 4, 2, 2, 2, 12, 1, 3, 4, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n) = 1 iff n prime or n prime^2: a(A000430(n))=1.

Examples

			n=12: (1,1,12), (1,2,6), (1,3,4), (2,2,3): therefore a(12)=4;
n=18: (1,1,18), (1,2,9), (1,3,6): therefore a(18)=3.
		

Crossrefs

Programs

  • PARI
    A088433(n) = { my(s=0); fordiv(n, u, for(v=u, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

A200214 Ordered factorizations of n with 3 distinct parts, all > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 18, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 18, 0, 0, 0, 0, 0, 6, 0, 12, 0, 0, 0, 18
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 6 = card({{2,3,4}, {2,4,3}, {3,2,4}, {3,4,2}, {4,2,3}, {4,3,2}}).
a(64) = 6 = card({{2,4,8}, {2,8,4}, {4,2,8}, {4,8,2}, {8,2,4}, {8,4,2}}).
		

Crossrefs

Programs

  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of3 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 3 && Length[# // Union] == 3 &] // Union}, Length[Permutations /@ of3 // Flatten[#, 1] &]];  Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
  • PARI
    A200214(n) = { my(s=0); fordiv(n, x, if((x>1)&&(xA122180, still quite naive) - Antti Karttunen, Jul 09 2017

Formula

a(n) = 6*A122180(n). - Antti Karttunen, Jul 08 2017

Extensions

Description clarified, term a(0) removed and a second example added by Antti Karttunen, Jul 09 2017

A334739 Number of unordered factorizations of n with 2 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 1, 3, 0, 3, 0, 5, 1, 1, 1, 6, 0, 1, 1, 5, 0, 3, 0, 3, 3, 1, 0, 8, 0, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 6, 0, 1, 3, 6, 1, 3, 0, 3, 1, 3, 0, 10, 0, 1, 3, 3, 1, 3, 0, 8, 2, 1, 0, 6, 1, 1, 1, 5, 0, 6, 1, 3, 1, 1, 1, 10, 0, 3, 3, 6
Offset: 1

Views

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
		

Crossrefs

Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778.

Programs

  • R
    maxe  <- function(n,d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n,l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0,1,0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n,d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i,l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj
          }
        }
        return(round(uh,3))
      }
    }
    n=100; l=2; sapply(1:n,uhRec,l)    # A334739
    n=100; l=3; sapply(1:n,uhRec,l)    # A334740

Formula

(Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.

A334740 Number of unordered factorizations of n with 3 different parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1
Offset: 1

Views

Author

Jacob Sprittulla, May 09 2020

Keywords

Comments

a(n) depends only on the prime signature of n. E.g. a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).

Examples

			a(48) = 3 = #{ (6,4,2), (8,3,2), (4,3,2,2) }.
		

Crossrefs

Cf. A334739 (2 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778

Programs

  • R
    maxe  <- function(n, d)  { i=0; while( n%%(d^(i+1))==0 )  { i=i+1 }; i }
    uhRec <- function(n, l=1)  {
      uh = 0
      if( n<=0 ) {
        return(0)
      } else if(n==1) {
        return(ifelse(l==0, 1, 0))
      } else if(l<=0) {
        return(0)
      } else if( (n>=2) && (l>=1) )  {
        for(d in 2:n)  {
          m = maxe(n, d)
          if(m>=1)  for(i in 1:m)  for(j in 1:min(i, l))   {
            uhj = uhRec( n/d^i, l-j )
            uh  = uh +  log(d)/log(n) * (-1)^(j+1) * choose(i, j) * uhj
          }
        }
        return(round(uh, 3))
      }
    }
    n=100; l=2; sapply(1:n, uhRec, l)    # A334739
    n=100; l=3; sapply(1:n, uhRec, l)    # A334740
Showing 1-8 of 8 results.