cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122180 Number of ways to write n as n = x*y*z with 1 < x < y < z < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2006

Keywords

Comments

x,y,z are distinct proper factors of n. See A122181 for n such that a(n) > 0.
If n has at most five divisors then a(n) = 0. - David A. Corneth, Oct 24 2024

Examples

			a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
		

Crossrefs

Programs

  • PARI
    for(n=1,105, t=0; for(x=2,n-1, for(y=x+1,n-1, for(z=y+1,n-1, if(x*y*z==n, t++)))); print1(t,", "))
    
  • PARI
    A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(xAntti Karttunen, Jul 08 2017
    
  • PARI
    a(n) = {
    	my(d = divisors(n));
    	if(#d <= 5, return(0));
    	my(res = 0, q);
    	for(i = 2, #d,
    		q = d[#d + 1 - i];
    		if(d[i]^2 > q,
    			return(res)
    		);
    		for(j = i + 1, #d,
    			qj = q/d[j];
    			if(qj <= d[j],
    				next(2)
    			);
    			if(denominator(qj) == 1 && n % qj == 0,
    				res++
    			);
    		);
    	);
    	res
    } \\ David A. Corneth, Oct 24 2024

Formula

a(n) = A200214(n)/6. - Antti Karttunen, Jul 08 2017

A200213 Ordered factorizations of n with 2 distinct parts, both > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 2, 2, 0, 4, 0, 4, 2, 2, 0, 6, 0, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 6, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 0, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 4, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 2, 2, 0, 10, 2
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}).
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n<2, 0, numtheory:-tau(n) - `if`(issqr(n), 3, 2)):
    seq(a(n), n = 1..85); # Peter Luschny, Jul 10 2017
  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of2 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 2 && Length[# // Union] == 2 &] // Union}, Length[Permutations /@ of2 // Flatten[#, 1] &]];  Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
  • PARI
    A200213(n) = if(!n,n,sumdiv(n, d, (d<>(n/d))*(d>1)*(dAntti Karttunen, Jul 07 2017
    
  • PARI
    a(n) = if (n==1, 0, numdiv(n) - issquare(n) - 2); \\ Michel Marcus, Jul 07 2017
    
  • Scheme
    (define (A200213 n) (if (<= n 1) 0 (- (A000005 n) 2 (A010052 n)))) ;; Antti Karttunen, Jul 07 2017

Formula

From Antti Karttunen, Jul 07 & Jul 09 2017: (Start)
a(1) = 0; for n > 1, a(n) = A000005(n) - A010052(n) - 2.
For n >= 2, a(n) = A161840(n) - 2*A010052(n). (End)

Extensions

Description clarified and term a(0) removed by Antti Karttunen, Jul 09 2017

A200221 Ordered factorizations of n with 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 3, 0, 0, 0, 9, 0, 0, 1, 3, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 0, 9, 0, 6, 0, 3, 3, 0, 0, 18, 0, 3, 0, 3, 0, 9, 0, 9, 0, 0, 0, 21, 0, 0, 3, 10, 0, 6, 0, 3, 0, 6, 0, 27, 0, 0, 3, 3, 0, 6, 0, 18, 3, 0, 0, 21
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 9 = card({{4,3,2}, {4,2,3}, {3,4,2}, {3,2,4}, {2,4,3}, {2,3,4}, {6,2,2},{2,6,2}, {2,2,6}}).
		

References

  • Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1).

Crossrefs

Cf. A200214.
Column k=3 of A251683.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand((`if`(isprime(n), 0,
          add(b(n/d), d=divisors(n) minus {1, n}))+1)*x)
        end:
    a:= n-> coeff(b(n), x, 3):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 07 2014
  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of3 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 3 &] // Union}, Length[Permutations /@ of3 // Flatten[#, 1] &]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
    nn = 200; f[list_, i_] := list[[i]]; a = Prepend[Table[1, {nn}], 0];
    c = Table[DirichletConvolve[f[a, n], f[a, n], n, m], {m, 1, nn}];
    Table[DirichletConvolve[f[a, n], f[c, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Apr 06 2020 *)

Formula

Dirichlet g.f.: (zeta(s)-1)^3. - Geoffrey Critzer, Apr 06 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2/2 + (3*gamma - 4)*log(n) + 3*gamma^2 - 9*gamma - 3*sg1 + 7), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Apr 07 2020
Showing 1-3 of 3 results.