cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321460 Expansion of Product_{k>0} (1 - x^k)^A001055(k).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, -1, 0, 0, 0, 7, -1, 1, -2, 4, 1, -2, 11, 1, -2, -10, 11, -12, 16, -15, -6, -6, -12, -1, 8, -4, -10, 9, -19, 21, -15, 23, 4, 28, -8, 42, -6, 9, 19, 3, -21, -18, -14, -15, 3, -72, 70, -21, -49, -9, 18, -12, 26, -68, -12
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2018

Keywords

Crossrefs

Convolution inverse of A066739.

A321377 Expansion of Product_{1 < i <= j} (1 - x^(i*j)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, -1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 3, 0, 2, -1, 1, 0, 1, -1, -2, -2, -3, 0, -3, -4, -3, -4, -6, 1, -6, -1, -4, -2, 0, 0, -2, 2, 1, 1, 1, 6, 5, 6, 8, 7, 8, 8, 9, 9, 9, 8, 11, 0, 6, 6, 7, 3, 6, -10, 1, -7, -6, -7, -6, -18, -10, -21, -13, -14
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Convolution inverse of A182270.

Formula

G.f.: Product_{k>0} (1 - x^k)^(A038548(k) - 1).
Showing 1-2 of 2 results.