cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A066815 Number of partitions of n into sums of products.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 33, 45, 69, 94, 148, 197, 289, 390, 575, 762, 1086, 1439, 2040, 2687, 3712, 4874, 6749, 8792, 11918, 15526, 20998, 27164, 36277, 46820, 62367, 80146, 105569, 135326, 177979, 227139, 296027, 377142, 490554, 622526, 804158
Offset: 0

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

Number of ways to choose a factorization of each part of an integer partition of n. - Gus Wiseman, Sep 05 2018
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = A001055(n). - Seiichi Manyama, Nov 14 2018

Examples

			From _Gus Wiseman_, Sep 05 2018: (Start)
The a(6) = 14 partitions of 6 into sums of products:
  6, 2*3,
  5+1, 4+2, 2*2+2, 3+3,
  4+1+1, 2*2+1+1, 3+2+1, 2+2+2,
  3+1+1+1, 2+2+1+1,
  2+1+1+1+1,
  1+1+1+1+1+1.
(End)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Length[Join@@Table[Tuples[facs/@ptn],{ptn,IntegerPartitions[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1-A001055(k)*x^k).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n > 0, a(0)=1, b(k)=Sum_{d|k} d*(A001055(d))^(k/d).

Extensions

Renamed by T. D. Noe, May 24 2011

A066806 Expansion of Product_{k>=1} (1+x^k)^A001055(k).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 109, 138, 180, 228, 289, 369, 463, 578, 732, 911, 1128, 1407, 1741, 2140, 2646, 3243, 3968, 4862, 5925, 7198, 8770, 10620, 12833, 15524, 18718, 22502, 27075, 32467, 38873, 46537, 55565, 66220, 78946
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
             d=divisors(n) minus {1, n}))
        end:
    b:= proc(n) b(n):= add((-1)^(n/d+1)*d*g(d$2), d=divisors(n)) end:
    a:= proc(n) a(n):= `if`(n=0, 1, add(a(n-k)*b(k), k=1..n)/n) end:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 16 2014
  • Mathematica
    g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]];
    b[n_] := b[n] = Sum[(-1)^(n/d + 1)*d*g[d, d], {d, Divisors[n]}];
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - k]*b[k], {k, 1, n}]/n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 23 2017, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def g(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else g(n//d, d) for d in divisors(n)[1:-1]))
    @cacheit
    def b(n): return sum((-1)**(n//d + 1)*d*g(d, d) for d in divisors(n))
    @cacheit
    def a(n): return 1 if n==0 else sum(a(n - k)*b(k) for k in range(1, n + 1))//n
    print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 19 2017, after Maple code

Formula

a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), n>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(n/d+1)*d*A001055(d).

A319517 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} (1 - x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, -1, 0, 0, 0, 7, -1, 1, -2, 4, 1, -2, 11, 1, -2, -10, 11, -11, 15, -16, -6, -7, -10, -1, 10, -5, -10, 12, -20, 19, -16, 24, -2, 28, -9, 41, -6, 15, 20, 4, -21, -15, -13, -14, 13, -73, 67, -30, -44, -19, 31, -30
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2018

Keywords

Crossrefs

Convolution inverse of A321566.
Product_{1 <= i_1 <= i_2 <= ... <= i_b} (1 - x^(i_1 * i_2 * ... * i_b)): A010815 (b=1), A321299 (b=2), A321361 (b=3), this sequence (b=4).

Formula

G.f.: Product_{k>0} (1 - x^k)^A218320(k).

A321594 Expansion of Product_{k>0} (1 - A001055(k)*x^k).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -2, 1, 4, -1, -4, 0, 4, -8, -3, 0, 0, -2, 17, -8, -2, -11, 4, 7, 0, 22, 26, -30, -32, 30, -18, 57, -58, 28, -12, -28, -41, 97, -11, -36, 8, -95, -5, -69, -29, 104, 76, 14, 209, -145, 29, 46, 371, -437, 0, -336, 116, -94, -388, 952, 449, -665
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = A001055(n).

Crossrefs

Convolution inverse of A066815.
Showing 1-4 of 4 results.