cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A066739 Number of representations of n as a sum of products of positive integers. 1 is not allowed as a factor, unless it is the only factor. Representations which differ only in the order of terms or factors are considered equivalent.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 518, 687, 960, 1267, 1747, 2294, 3106, 4052, 5449, 7063, 9365, 12092, 15914, 20422, 26639, 34029, 44091, 56076, 72110, 91306, 116808, 147272, 187224, 235201, 297594, 372390, 468844, 584644, 732942
Offset: 0

Views

Author

Naohiro Nomoto, Jan 16 2002

Keywords

Examples

			For n=5, 5 = 4+1 = 2*2+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1, so a(5) = 8.
For n=8, 8 = 4*2 = 2*2*2 = ... = 4+4 = 2*2+4 = 2*2+2*2 = ...; note that there are 3 ways to factor the terms of 4+4. In general, if a partition contains a number k exactly r times, then the number of ways to factor the k's is the binomial coefficient C(A001055(k)+r-1,r).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d*b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60); # Alois P. Heinz, Apr 22 2012
  • Mathematica
    p[ n_, 1 ] := If[ n==1, 1, 0 ]; p[ 1, k_ ] := 1; p[ n_, k_ ] := p[ n, k ]=p[ n, k-1 ]+If[ Mod[ n, k ]==0, p[ n/k, k ], 0 ]; A001055[ n_ ] := p[ n, n ]; a[ n_, 1 ] := 1; a[ 0, k_ ] := 1; a[ n_, k_ ] := If[ k>n, a[ n, n ], a[ n, k ]=a[ n, k-1 ]+Sum[ Binomial[ A001055[ k ]+r-1, r ]a[ n-k*r, k-1 ], {r, 1, Floor[ n/k ]} ] ]; a[ n_ ] := a[ n, n ]; (* p[ n, k ]=number of factorizations of n with factors <= k. a[ n, k ]=number of representations of n as a sum of products of positive integers, with summands <= k *)
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[0] = 1; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSum[j, #*b[#, #]&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort/@Join@@Table[Tuples[facs/@ptn],{ptn,IntegerPartitions[n]}]]],{n,50}] (* Gus Wiseman, Sep 05 2018 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum([0 if d>k else b(n//d, d) for d in divisors(n)[1:-1]]))
    @cacheit
    def a(n): return 1 if n==0 else sum(sum(d*b(d, d) for d in divisors(j))*a(n - j)  for j in range(1, n + 1))//n
    print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 19 2017, after Maple code

Formula

a(n) = Sum_{pi} Product_{m=1..n} binomial(k(m)+A001055(m)-1, k(m)), where pi runs through all partitions k(1) + 2 * k( 2) + ... + n * k(n) = n. a(n)=1/n*Sum_{m=1..n} a(n-m)*b(m), n > 0, a(0)=1, b(m)=Sum_{d|m} d*A001055(d). Euler transform of A001055(n): Product_{m=1..infinity} (1-x^m)^(-A001055(m)). - Vladeta Jovovic, Jan 21 2002

Extensions

Edited by Dean Hickerson, Jan 19 2002

A321460 Expansion of Product_{k>0} (1 - x^k)^A001055(k).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, -1, 0, 0, 0, 7, -1, 1, -2, 4, 1, -2, 11, 1, -2, -10, 11, -12, 16, -15, -6, -6, -12, -1, 8, -4, -10, 9, -19, 21, -15, 23, 4, 28, -8, 42, -6, 9, 19, 3, -21, -18, -14, -15, 3, -72, 70, -21, -49, -9, 18, -12, 26, -68, -12
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2018

Keywords

Crossrefs

Convolution inverse of A066739.

A066816 Expansion of Product_{k>=1} (1 + A001055(k)*x^k).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 10, 15, 20, 25, 36, 46, 58, 78, 95, 120, 160, 198, 249, 318, 392, 485, 608, 745, 914, 1140, 1390, 1692, 2092, 2528, 3032, 3709, 4468, 5364, 6494, 7770, 9279, 11161, 13347, 15824, 18920, 22465, 26539, 31607, 37345, 43994, 52016
Offset: 0

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -A001055(n). - Seiichi Manyama, Nov 14 2018

Crossrefs

Formula

a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), n > 0, a(0)=1, b(k) = Sum_{d|k} (-1)^(k/d+1)*d*(A001055(d))^(k/d).

A321567 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} (1 + x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 109, 138, 180, 228, 289, 369, 463, 578, 732, 911, 1128, 1407, 1741, 2140, 2646, 3243, 3967, 4861, 5924, 7196, 8767, 10616, 12827, 15516, 18707, 22486, 27054, 32440, 38835, 46488, 55502, 66136, 78836, 93727, 111265
Offset: 0

Views

Author

Seiichi Manyama, Nov 13 2018

Keywords

Crossrefs

Product_{1 <= i_1 <= i_2 <= ... <= i_b} (1 + x^(i_1 * i_2 * ... * i_b)): A000009 (b=1), A211856 (b=2), A321359 (b=3), this sequence (b=4).

Formula

G.f.: Product_{k>0} (1 + x^k)^A218320(k).
Showing 1-4 of 4 results.