A383148 k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m.
12, 18, 20, 24, 30, 40, 42, 54, 56, 60, 66, 78, 84, 88, 90, 102, 104, 114, 120, 132, 138, 140, 168, 174, 186, 196, 204, 222, 224, 234, 246, 252, 258, 264, 270, 280, 282, 308, 312, 318, 348, 354, 360, 364, 366, 368, 380, 402, 414, 420, 426, 438, 440, 456, 464, 468, 474, 476
Offset: 1
Keywords
Examples
The sum of the divisors of 60 is 168, and 168 = 2*60 + 48, and 48 = 4*12 and 4 and 12 are divisors of 60, so 60 is in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- S. Flora Jeba, Anirban Roy, and Manjil P. Saikia, On k-Facile Perfect Numbers, Algebra and Its Applications (ICAA-2023), Springer Proc. Math. Stat., Vol. 474 (2025), 111-121.
Programs
-
Mathematica
q[m_] := Module[{d = Divisors[m], ab}, ab = Total[d] - 2*m; ab > 0 && AnyTrue[Subsets[d], Times @@ # == ab &]]; Select[Range[500], q] (* Amiram Eldar, Apr 18 2025 *)
-
PARI
prodDistinctDiv(n, k, f=factor(n))=my(D=divisors([n,f])); helper(D[2..#D], k) helper(v,k)=if(k==1, return(1)); v=select(d->k%d==0, v); if(#v<3, if(#v==2, return(v[2]==k || vecprod(v)==k)); return(#v && v[1]==k)); my(u=v[1..#v-1]); helper(u,k) || helper(u,k/v[#v]) is(n,f=factor(n))=my(t=sigma([n,f])-2*n); t>1 && prodDistinctDiv(n, t, f) \\ Charles R Greathouse IV, Apr 24 2025
-
Sage
def facile_candidates(n): from itertools import combinations divs = divisors(n) sigma_n = sigma(n, 1) candidates = set() # Generate all products of distinct combinations of divisors for r in range(2, len(divs)+1): # start from 2-element products to avoid m=n for combo in combinations(divs, r): product = prod(combo) if product < sigma_n: candidates.add(product) return sorted(candidates) def find_facile_perfects(x): result = [] for n in range(1, x+1): sig = sigma(n, 1) if sig < 2*n: continue candidates = facile_candidates(n) for m in candidates: if sig == 2*n + m: print(n,m) result.append(n) break return result
Comments