A385029 a(n) = Sum_{-n <= a, b, c <= n} (b^2 - 4*a*c).
18, 250, 1372, 4860, 13310, 30758, 63000, 117912, 205770, 339570, 535348, 812500, 1194102, 1707230, 2383280, 3258288, 4373250, 5774442, 7513740, 9648940, 12244078, 15369750, 19103432, 23529800, 28741050, 34837218, 41926500, 50125572, 59559910, 70364110, 82682208, 96668000
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
A385029[n_] := (n*(n + 1)*(2*n + 1)^3)/3; Array[A385029, 50] (* Paolo Xausa, Jun 18 2025 *)
-
Python
a = lambda n: ((n*n+n)*((n << 1)+1)**3)//3 print([a(n) for n in range(1, 11)])
Formula
a(n) = (n*(n+1)*(2*n+1)^3)/3.
G.f.: 2*x*(9 + 71*x + 71*x^2 + 9*x^3)/(1 - x)^6. - Stefano Spezia, Jun 15 2025
From Amiram Eldar, Jun 18 2025; (Start)
Sum_{n>=1} 1/a(n) = 21*(1 - zeta(3)/2) - 12*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi^3/8 + 3*Pi - 21. (End)
Comments