cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A120944 Composite squarefree numbers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Zak Seidov, Aug 19 2006

Keywords

Comments

Intersection of A002808 and A005117: n > 1 such that A008966(n) * (1-A010051(n)) = 1. - Reinhard Zumkeller, Dec 19 2011

Crossrefs

Cf. A000469 (Nonprime squarefree numbers).
Set of powers: A182853.

Programs

  • Haskell
    a120944 n = a120944_list !! (n-1)
    a120944_list = filter ((== 1) . a008966) a002808_list
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Magma
    [n: n in [6..161] | IsSquarefree(n) and not IsPrime(n)]; // Bruno Berselli, Mar 03 2011
    
  • Maple
    select(not(isprime) and numtheory:-issqrfree, [$2..1000]); # Robert Israel, Jul 07 2015
  • Mathematica
    lst={};Do[If[SquareFreeQ[n],If[ !PrimeQ[n],AppendTo[lst,n]]],{n,2,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009; updated by Jean-François Alcover, Jun 19 2013 *)
    Select[Range[200], PrimeNu[#] > 1 && SquareFreeQ[#] &] (* Carlos Eduardo Olivieri, Jul 07 2015 *)
  • PARI
    is(n)=issquarefree(n)&&!isprime(n)&&n>1 \\ Charles R Greathouse IV, Apr 11 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return len(f) > 1 and all(f[p] < 2 for p in f)
    print(list(filter(ok, range(1, 162)))) # Michael S. Branicky, Jun 10 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A120944(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

From Enrique Pérez Herrero, Apr 01 2012: (Start)
Solutions to floor(omega(x)/bigomega(x))*(1-floor(1/bigomega(x))) = 1, where bigomega is A001222 and omega is A001221.
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2s) - 1 - PrimeZeta(s). (End)
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024

A182850 a(n) = number of iterations that n requires to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

The fixed points of the x -> A181819(x) map are 1 and 2. Note that the x -> A000005(x) map has the same fixed points, and that A000005(n) = A181819(n) iff n is cubefree (cf. A004709). Under the x -> A181819(x) map, it seems significantly easier to generalize about which kinds of integers take a given number of iterations to reach a fixed point than under the x -> A000005(x) map.
Also the number of steps in the reduction of the multiset of prime factors of n wherein one repeatedly takes the multiset of multiplicities. For example, the a(90) = 5 steps are {2,3,3,5} -> {1,1,2} -> {1,2} -> {1,1} -> {2} -> {1}. - Gus Wiseman, May 13 2018

Examples

			A181819(6) = 4; A181819(4) = 3; A181819(3) = 2; A181819(2) = 2. Therefore, a(6) = 3, a(4) = 2, a(3)= 1, and a(2) = 0.
		

Crossrefs

A182857 gives values of n where a(n) increases to a record.

Programs

  • Haskell
    a182850 n = length $ takeWhile (`notElem` [1,2]) $ iterate a181819 n
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Mathematica
    Table[If[n<=2,0,Length[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]-1],{n,100}] (* Gus Wiseman, May 13 2018 *)
  • Scheme
    ;; With memoization-macro definec.
    (definec (A182850 n) (if (<= n 2) 0 (+ 1 (A182850 (A181819 n))))) ;; Antti Karttunen, Feb 05 2016

Formula

For n > 2, a(n) = a(A181819(n)) + 1.
a(n) = 0 iff n equals 1 or 2.
a(n) = 1 iff n is an odd prime (A000040(n) for n>1).
a(n) = 2 iff n is a composite perfect prime power (A025475(n) for n>1).
a(n) = 3 iff n is a squarefree composite integer or a power of a squarefree composite integer (cf. A182853).
a(n) = 4 iff n's prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number (cf. A182854).

A323014 a(1) = 0; a(prime) = 1; otherwise a(n) = 1 + a(A181819(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Except for n = 2, same as A182850. Unlike A182850, the terms of this sequence depend only on the prime signature (A101296, A118914) of the index.

Crossrefs

Positions of 1's are the prime numbers A000040.
Positions of 2's are the proper prime powers A246547.
Positions of 3's are A182853.
Row lengths of A323023.

Programs

  • Mathematica
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@FactorInteger[n]]]];
    Array[dep,100]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323014(n) = if(1==n,0,if(isprime(n),1, 1+A323014(A181819(n)))); \\ Antti Karttunen, Jun 10 2022

Formula

For all n >= 1, a(n) = a(A046523(n)). [See comment] - Antti Karttunen, Jun 10 2022

Extensions

Terms a(88) and beyond from Antti Karttunen, Jun 10 2022

A376593 Second differences of consecutive nonsquarefree numbers (A013929). First differences of A078147.

Original entry on oeis.org

-3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, 0, -1, -2, 3, -3, 2, 1, -2, 0, 2, -2, -1, 0, 3, 0, 0, 0, -3, 2, -2, 2, -2, 0, 1, 2, -1, -2, 3, 0, -1, -2, 1, 0, -1, 2, 1, -2, 0, 2, -3, 1, -1, 2, -2, 3, 0, 0, -3, 2, 1, -2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Comments

The range is {-3, -2, -1, 0, 1, 2, 3}.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A078147.
Zeros are A376594, complement A376595.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A064113 lists positions of adjacent equal prime gaps.
A114374 counts partitions into nonsquarefree numbers.
A246655 lists prime-powers exclusive, inclusive A000961.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376594 (inflections and undulations), A376595 (nonzero curvature).

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&],2]
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A376593(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        k = next(i for i in range(1,5) if any(d>1 for d in factorint(m+i).values()))
        return next(i for i in range(1-k,5-k) if any(d>1 for d in factorint(m+(k<<1)+i).values())) # Chai Wah Wu, Oct 02 2024

A362605 Numbers whose prime factorization has more than one mode. Numbers without a unique exponent of maximum frequency in the prime signature.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The prime indices of 180 are {1,1,2,2,3}, with modes {1,2}, so 180 is in the sequence, and the sequence differs from A182853.
The terms together with their prime indices begin:
     6: {1,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    21: {2,4}
    22: {1,5}
    26: {1,6}
    30: {1,2,3}
    33: {2,5}
    34: {1,7}
    35: {3,4}
    36: {1,1,2,2}
    38: {1,8}
    39: {2,6}
    42: {1,2,4}
    46: {1,9}
    51: {2,7}
    55: {3,5}
		

Crossrefs

The first term with bigomega n appears to be A166023(n).
The complement is A356862, counted by A362608.
For co-mode complement we have A359178, counted by A362610.
For co-mode we have A362606, counted by A362609.
Partitions of this type are counted by A362607.
These are the positions of terms > 1 in A362611.
A112798 lists prime indices, length A001222, sum A056239.
A362614 counts partitions by number of modes, ranks A362611.
A362615 counts partitions by number of co-modes, ranks A362613.

Programs

  • Maple
    q:= n-> (l-> nops(l)>1 and l[-1]=l[-2])(sort(map(i-> i[2], ifactors(n)[2]))):
    select(q, [$1..250])[];  # Alois P. Heinz, May 10 2023
  • Mathematica
    Select[Range[100],Count[Last/@FactorInteger[#], Max@@Last/@FactorInteger[#]]>1&]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); if(#e < 2, 0, e = vecsort(e); e[#e-1] == e[#e]);} \\ Amiram Eldar, Jan 20 2024
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (e:=list(factorint(n).values())).count(max(e))>1
    print([k for k in range(155) if ok(k)]) # Michael S. Branicky, May 06 2023
    

A376562 Second differences of consecutive non-perfect-powers (A007916). First differences of A375706.

Original entry on oeis.org

1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros are A376588, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376588 (inflections and undulations), A376589 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ],2]
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A376562(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r = m+((k:=next(i for i in count(1) if not perfect_power(m+i)))<<1)
        return next(i for i in count(1-k) if not perfect_power(r+i)) # Chai Wah Wu, Oct 02 2024

A336415 Number of divisors of n! with equal prime multiplicities.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 13, 21, 24, 28, 33, 49, 53, 85, 94, 100, 104, 168, 173, 301, 307, 317, 334, 590, 595, 603, 636, 642, 652, 1164, 1171, 2195, 2200, 2218, 2283, 2295, 2301, 4349, 4478, 4512, 4519, 8615, 8626, 16818, 16836, 16844, 17101, 33485, 33491, 33507, 33516, 33582
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2020

Keywords

Comments

A number k has "equal prime multiplicities" (or is "uniform") iff its prime signature is constant, meaning that k is a power of a squarefree number.

Examples

			The a(n) uniform divisors of n for n = 1, 2, 6, 8, 30, 36 are the columns:
  1  2  6  8  30  36
     1  3  6  15  30
        2  4  10  16
        1  3   8  15
           2   6  10
           1   5   9
               4   8
               3   6
               2   5
               1   4
                   3
                   2
                   1
In 20!, the multiplicity of the third prime (5) is 4 but the multiplicity of the fourth prime (7) is 2. Hence there are 2^3 - 1 = 3 divisors with all exponents 3 (we subtract |{1}| = 1 from that count as 1 has no exponent 3). - _David A. Corneth_, Jul 27 2020
		

Crossrefs

The version for distinct prime multiplicities is A336414.
The version for nonprime perfect powers is A336416.
Uniform partitions are counted by A047966.
Uniform numbers are A072774, with nonprime terms A182853.
Numbers with distinct prime multiplicities are A130091.
Divisors with distinct prime multiplicities are counted by A181796.
Maximum divisor with distinct prime multiplicities is A327498.
Uniform divisors are counted by A327527.
Maximum uniform divisor is A336618.
1st differences are given by A048675.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, my(ex=factor(d)[,2]); (#ex==0) || (vecmin(ex) == vecmax(ex))); \\ Michel Marcus, Jul 24 2020
    
  • PARI
    a(n) = {if(n<2, return(1)); my(f = primes(primepi(n)), res = 1, t = #f); f = vector(#f, i, val(n, f[i])); for(i = 1, f[1], while(f[t] < i, t--; ); res+=(1<David A. Corneth, Jul 27 2020

Formula

a(n) = A327527(n!).

Extensions

Terms a(31) and onwards from David A. Corneth, Jul 27 2020

A303606 Powers of composite squarefree numbers that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1764, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10404, 10648, 11025, 11236
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			196 is in the sequence because 196 = 2^2*7^2.
4900 is in the sequence because 4900 = 2^2*5^2*7^2.
		

Crossrefs

Intersection of A024619 and A072777.
Intersection of A072774 and A126706.
Intersection of A013929 and A182853.

Programs

  • Mathematica
    Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A303606(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A120944(n)-1)*A120944(n)) = Sum_{k>=2} (zeta(k)/zeta(2*k) - P(k) - 1) = 0.07547719891508850482..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021

A329140 Numbers whose prime signature is a periodic word.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2019

Keywords

Comments

First differs from A182853 in having 2100 = 2^2 * 3^1 * 5^2 * 7^1.
A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization.
A sequence is aperiodic if its cyclic rotations are all different.

Examples

			The sequence of terms together with their prime signatures begins:
   6: (1,1)
  10: (1,1)
  14: (1,1)
  15: (1,1)
  21: (1,1)
  22: (1,1)
  26: (1,1)
  30: (1,1,1)
  33: (1,1)
  34: (1,1)
  35: (1,1)
  36: (2,2)
  38: (1,1)
  39: (1,1)
  42: (1,1,1)
  46: (1,1)
  51: (1,1)
  55: (1,1)
  57: (1,1)
  58: (1,1)
		

Crossrefs

Complement of A329139.
Periodic compositions are A178472.
Periodic binary words are A152061.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is a Lyndon word are A329131.
Numbers whose prime signature is a necklace are A329138.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
    Select[Range[100],!aperQ[Last/@FactorInteger[#]]&]

A182855 Numbers that require exactly five iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

In each case, 2 is the fixed point that is reached (1 is the other fixed point of the x -> A181819(x) map).
Includes all integers whose prime signature a) contains two or more distinct numbers, and b) contains no number that occurs the same number of times as any other number. The first member of this sequence that does not fit that description is 75675600, whose prime signature is (4,3,2,2,1,1).
A full characterization is: Numbers whose prime signature (1) has not all equal multiplicities but (2) the numbers of distinct parts appearing with each distinct multiplicity are all equal. For example, the prime signature of 2520 is {1,1,2,3}, which satisfies (1) but fails (2), as the numbers of distinct parts appearing with each distinct multiplicity are 1 (with multiplicity 2, the part being 1) and 2 (with multiplicity 1, the parts being 2 and 3). Hence the sequence does not contain 2520. - Gus Wiseman, Jan 02 2019

Examples

			1. 180 requires exactly five iterations under the x -> A181819(x) map to reach a fixed point (namely, 2).  A181819(180) = 18;  A181819(18) = 6; A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
2. The prime signature of 180 (2^2*3^2*5) is (2,2,1).
a. Two distinct numbers appear in (2,2,1) (namely, 1 and 2).
b. Neither 1 nor 2 appears in (2,2,1) the same number of times as any other number that appears there.
		

Crossrefs

Numbers n such that A182850(n) = 5. See also A182853, A182854.
Subsequence of A059404 and A182851. Includes A085987 and A179642 as subsequences.

Programs

  • Mathematica
    Select[Range[1000],With[{sig=Sort[Last/@FactorInteger[#]]},And[!SameQ@@Length/@Split[sig],SameQ@@Length/@Union/@GatherBy[sig,Length[Position[sig,#]]&]]]&] (* Gus Wiseman, Jan 02 2019 *)
Showing 1-10 of 19 results. Next