Original entry on oeis.org
36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1
For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
A360543(n) = | {} | = 0,
A361235(n) = | {4, 8, 16} | = 3,
A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
A360543(n) = | {30} | = 1,
A361235(n) = | {8, 16, 27, 32} | = 4,
A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
n | a + b = c | d + e = f | g + tau + phi - 1 = n
------------------------------------------------------
36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 + 9 + 12 - 1 = 36
48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 = 48
50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 + 6 + 20 - 1 = 50
54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 + 8 + 18 - 1 = 54
72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 = 72
75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 + 6 + 40 - 1 = 75
80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 = 80
96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 = 96
98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 + 6 + 42 - 1 = 98
100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 + 9 + 40 - 1 = 100
108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Diagram showing k = 1..n for n = 1..54 in blue for k counted by A360480(n), in green for k counted by A360543(n), in gold for k counted by A361235(n), and in magenta for k counted by A355432(n). Red dots indicate k | n such that k > 1, while gray dots indicate gcd(k, n) = 1.
- Michael De Vlieger, 1016 X 1016 pixel bitmap read left to right in rows, then top to bottom where the k-th pixel is black if A126706(k) is in this sequence, else white (1032256 pixels total).
Cf.
A000005,
A000010,
A001694,
A002182,
A007947,
A045763,
A053669,
A119288,
A126706,
A168263,
A243822,
A243823,
A355432,
A360480,
A360543,
A361235.
-
nn = 2^16;
a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
Reap[ Do[n = s[[j]];
If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]
A365308
Powers of primorials P(k)^m, k > 1, m > 1, where P(k) = A002110(k).
Original entry on oeis.org
36, 216, 900, 1296, 7776, 27000, 44100, 46656, 279936, 810000, 1679616, 5336100, 9261000, 10077696, 24300000, 60466176, 362797056, 729000000, 901800900, 1944810000, 2176782336, 12326391000, 13060694016, 21870000000, 78364164096, 260620460100, 408410100000, 470184984576
Offset: 1
Terms less than 10^4 include P(2)^2 = 36, P(2)^3 = 216, P(2)^4 = 1296, P(2)^5 = 7776, and P(3)^2 = 900.
- Michael De Vlieger, Table of n, a(n) for n = 1..4935
- Michael De Vlieger, 1024 X 1024 Bitmap showing A322793(n) in black if a power of 2 (i.e., in A000079) else white if in this sequence, n = 1..2^20, arranged from left to right in rows, then from top to bottom.
-
nn = 2^39; k = 2; P = 6; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]] ][[-1, 1]]
A359280
Powerful numbers that are neither prime powers nor powers of squarefree composites.
Original entry on oeis.org
72, 108, 144, 200, 288, 324, 392, 400, 432, 500, 576, 648, 675, 784, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2304, 2312, 2500, 2592, 2700, 2704, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3600, 3872, 3888, 3969
Offset: 1
Let b(n) = A286708(n).
b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2.
b(2) = a(1) = 72 since 72 is not a perfect power of rad(72).
b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence.
b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6.
b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6.
b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot A001694(ym + x) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and both prime powers and those in A303606 in white.
- Michael De Vlieger, Plot A286708(n) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and those in A303606 in white.
-
nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A359280(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
j = isqrt(x)
c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return bisection(f,n,n) # Chai Wah Wu, Feb 09 2025
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 90, 92, 99, 104, 116, 117, 120, 124, 126, 132, 136, 140, 148, 150, 152, 153, 156, 164, 168, 171, 172, 175, 176, 180, 184, 188, 198, 204, 207, 208, 212, 220, 228, 232, 234, 236, 244, 248, 260, 261
Offset: 1
This sequence is A126706 \ A361098.
Union of A364997, A364998, A364999.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, List of A126706(1..400), 20 in a row. Terms in this sequence are circled, while those in small colored circles appear in A361098. Blue represents numbers in A364702, purple A359280, and magenta A303606.
- Michael De Vlieger, Plot b(n) at (x,y) = (n mod 1024, -floor(n/1024)), where terms in this sequence are shown in black, and those in A361098 appear in white.
-
Select[Select[Range[261], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, Or[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A303661
Powers of squarefree semiprimes that are not squarefree.
Original entry on oeis.org
36, 100, 196, 216, 225, 441, 484, 676, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10648, 11236, 12321, 13225, 13924, 14161, 14884
Offset: 1
1089 is in the sequence because 1089 = 3^2*11^2.
1296 is in the sequence because 1296 = 2^4*3^4.
-
Select[Range[15000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && PrimeNu[#] == 2 && ! SquareFreeQ[#] &]
seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] == 2 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10000] (* Amiram Eldar, Feb 12 2021 *)
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A303661(n):
def g(x): return int(-(t:=primepi(s:=isqrt(x)))-(t*(t-1)>>1)+sum(primepi(x//k) for k in primerange(1, s+1)))
def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 19 2024
A363596
a(n) = (Product_{k=1..pi(n+1)} prime(k)^floor(n/(prime(k)-1) ) )/(n+1)!.
Original entry on oeis.org
1, 1, 2, 1, 6, 2, 12, 3, 10, 2, 12, 2, 420, 60, 24, 3, 90, 10, 420, 42, 660, 60, 360, 30, 3276, 252, 56, 4, 120, 8, 3696, 231, 3570, 210, 36, 2, 103740, 5460, 840, 42, 13860, 660, 27720, 1260, 19320, 840, 5040, 210, 198900, 7956, 10296, 396, 11880, 440, 6384, 228
Offset: 0
The table below relates b(n) = A091137(n) to a(n), with (n+1)!*a(n) = k!*m = b(n), where k! is the largest factorial that divides b(n).
n A067255(b(n)) (n+1)!*a(n) k! * m
---------------------------------------
0 0 1! * 1 1! * 1
1 1 2! * 1 2! * 1
2 2.1 3! * 2 3! * 2
3 3.1 4! * 1 4! * 1
4 4.2.1 5! * 6 6! * 1
5 5.2.1 6! * 2 6! * 2
6 6.3.1.1 7! * 12 7! * 12
7 7.3.1.1 8! * 3 8! * 3
8 8.4.2.1 9! * 10 10! * 1
9 9.4.2.1 10! * 2 10! * 2
10 10.5.2.1.1 11! * 12 12! * 1
11 11.5.2.1.1 12! * 2 12! * 2
12 12.6.3.2.1.1 13! * 420 15! * 2
13 13.6.3.2.1.1 14! * 60 15! * 4
14 14.7.3.2.1.1 15! * 24 15! * 24
15 15.7.3.2.1.1 16! * 3 16! * 3
16 16.8.4.2.1.1.1 17! * 90 18! * 5
...
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See p. 10.
- Michael De Vlieger, Log log scatterplot of a(n+1), n = 0..10^4.
- Michael De Vlieger, Plot p(k)^e(k) | a(n) at (x, y) = (n, k), n = 0..2^11, with a color function representing e(k), where black = 1, red = 2, and the largest exponent in the dataset shown in magenta. The bar at bottom shows the number 1 in black, primes in red, composite prime powers in gold, squarefree terms in green, and terms that are neither squarefree nor prime powers in blue.
-
Table[j = 1; ( Times @@ Reap[While[Sow[#^Floor[n/(# - 1)]] &[Prime[j]] > 1, j++]][[-1, 1]] )/Factorial[n + 1], {n, 0, 60}]
-
from math import prod, factorial
from sympy import sieve
def A363596(n: int) -> int:
numer = prod(p ** (n // (p - 1)) for p in sieve.primerange(2, n + 2))
return numer // factorial(n + 1)
print([A363596(n) for n in range(56)]) # Peter Luschny, Aug 17 2025
A365436
a(2^k) = 2^k for all k >= 0. let 2^r be the smallest power of 2 which exceeds n, then a(n) = the least novel m*a(k), where k = 2^r-n, and m is not a prior term.
Original entry on oeis.org
1, 2, 3, 4, 15, 10, 5, 8, 30, 60, 90, 24, 18, 12, 6, 16, 42, 84, 126, 168, 630, 420, 210, 56, 35, 70, 105, 28, 21, 14, 7, 32, 63, 154, 189, 252, 945, 770, 315, 504, 1890, 3780, 5670, 1512, 1134, 756, 378, 144, 54, 108, 162, 216, 810, 540, 270, 72, 45, 110, 135
Offset: 1
a(3) = 3 since k = 1, a(1) = 1 and 3 is the smallest number which is not already a term.
a(5) = 15 since k = 8-5 = 3, a(3) = 3 and 5 is the smallest number which is not already a term.
a(31) = 7, the least unused term at this point in the sequence.
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- David A. Corneth, PARI program.
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^12, showing primes in red, composite prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue.
- Michael De Vlieger, Fan style binary tree of a(n), n = 1..8191, showing primes in red, squares of primes in orange, other composite prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue, purple (also in A286708), and pink (also in A303606).
- Index entries for sequences that are permutations of the natural numbers
-
nn = 120; c[] := False; c[1] = True; m[] := 1; a[1] = 1; c[1] = True;
Do[If[IntegerQ[#],
Set[k, i],
While[Or[c[m[#]], c[Set[k, # m[#]]]], m[#]++] &[
a[2^Floor[# + 1] - i]]] &@ Log2[i];
Set[{a[i], c[k]}, {k, True}], {i, nn}];
Array[a, nn] (* Michael De Vlieger, Nov 13 2023 *)
-
\\ See PARI link
A366854
Powers k^m such that k is neither squarefree nor prime powers, and m > 1.
Original entry on oeis.org
144, 324, 400, 576, 784, 1296, 1600, 1728, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 5832, 6400, 7056, 7744, 8000, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 13824, 14400, 15376, 15876, 17424, 18225
Offset: 1
Let b(n) = A126706(n).
a(1) = b(1)^2 = 12^2 = 144. Since 144 = 2^4*3^2, it is both powerful and a perfect power.
a(2) = b(2)^2 = 18^2 = 324.
a(3) = b(3)^2 = 20^2 = 400.
a(8) = b(1)^3 = 12^3 = 1728, etc.
-
nn = 20000; i = 1; k = 2;
MapIndexed[Set[S[First[#2]], #1] &,
Select[Range@ Sqrt[nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &] ];
Union@ Reap[
While[j = 2;
While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2,
k++; i++] ][[-1, 1]]
Original entry on oeis.org
36, 64, 100, 196, 216, 225, 441, 484, 676, 729, 1000, 1024, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10648, 11236, 12321, 13225, 13924, 14161
Offset: 1
-
V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; Select[Range[15000], !SquareFreeQ[#] && f[#] == -1 &] (* Amiram Eldar, Apr 29 2025 *)
-
print([n for n in range(1, 14444) if moebius(n) == 0 and A382883(n) == -1])
A383394
Perfect powers of Achilles numbers.
Original entry on oeis.org
5184, 11664, 40000, 82944, 153664, 186624, 250000, 373248, 419904, 455625, 640000, 746496, 937024, 944784, 1259712, 1265625, 1327104, 1750329, 1827904, 1882384, 2458624, 3240000, 3779136, 4000000, 5345344, 6718464, 7290000, 8000000, 8340544, 9529569, 10240000
Offset: 1
Table of n, a(n) for n = 1..12:
n a(n)
--------------------------------
1 5184 = 72^2 = 2^6 * 3^4
2 11664 = 108^2 = 2^4 * 3^6
3 40000 = 200^2 = 2^6 * 5^4
4 82944 = 288^2 = 2^10 * 3^4
5 153664 = 392^2 = 2^6 * 7^4
6 186624 = 432^2 = 2^8 * 3^6
7 250000 = 500^2 = 2^4 * 5^6
8 373248 = 72^3 = 2^9 * 3^6
9 419904 = 648^2 = 2^6 * 3^8
10 455625 = 675^2 = 3^6 * 5^4
11 640000 = 800^2 = 2^10 * 5^4
12 746496 = 864^2 = 2^10 * 3^6
-
nn = 2^24; mm = Sqrt[nn]; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Rest@ Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[mm, 3]}, {a, Sqrt[mm/b^3]}], GCD @@ FactorInteger[#][[;; , -1]] == 1 &]]; Union@ Reap[While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]]
-
from math import isqrt
from sympy import integer_nthroot, mobius
def A383394(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while f(kmin) < kmin: kmin >>= 1
kmin = max(kmin,kmax >> 1)
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x):
c, l = squarefreepi(integer_nthroot(x,3)[0])+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))-1, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(x//k2**3)
return c-l
def f(x): return n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
return bisection(f,n,n) # Chai Wah Wu, Aug 11 2025
Showing 1-10 of 13 results.
Comments