A364702
Numbers k in A361098 that are not divisible by A007947(k)^2.
Original entry on oeis.org
48, 50, 54, 75, 80, 96, 98, 112, 135, 147, 160, 162, 189, 192, 224, 240, 242, 245, 250, 252, 270, 294, 300, 320, 336, 338, 350, 352, 360, 363, 375, 378, 384, 396, 405, 416, 448, 450, 468, 480, 486, 490, 504, 507, 525, 528, 540, 550, 560, 567, 578, 588, 594, 600
Offset: 1
Let B = A126706.
B(1) = 12 is not in the sequence since 3*6 > 12.
B(2) = 18 is not in the sequence, since, though 3*6 = 18, 5*6 > 18.
B(6) = S(1) = 36 is not in the sequence since, though 3*6 < 36 and 5*6 < 36, rad(36)^2 = 6^2 | 36, hence B(6) = T(1).
B(10) = S(2) = a(1) = 48 is in the sequence since rad(48) = 6, and 6^2 does not divide 48.
B(11) = S(3) = a(2) = 50 is in the sequence since rad(50) = 10, and 10^2 does not divide 50, etc.
-
nn = 2^10; a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Reap[Do[n = s[[j]]; If[And[#1*a053669[n] < n, #1*#2 <= n, ! Divisible[n, #1^2]] & @@ {Times @@ #, #[[2]]} &@ FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}] ][[-1, -1]]
A364998
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) <= k but rad(k)*A053669(k) > k.
Original entry on oeis.org
18, 24, 90, 120, 126, 150, 168, 180, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 630, 666, 696, 738, 744, 774, 840, 846, 888, 954, 984, 990, 1032, 1050, 1062, 1098, 1128, 1170, 1206, 1260, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1470, 1494
Offset: 1
Let b(n) = A126706(n), S = A360768, and T = A363082.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is not in S.
b(2) = a(1) = 18 since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, 18 does not exceed 18 and 30 is larger than 18, hence 18 is in both S and T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is in S but not T.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, thus 40 is neither in S nor T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), with n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus showing 400 terms. Terms in this sequence are colored black, those in A364999 in blue, in A364997 in green, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), with n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus showing 14400 terms, using the same color scheme as described immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms in this sequence are colored black, else white. Demonstrates a strong quasiperiodic pattern approximately mod 169.
Cf.
A007947,
A053669,
A119288,
A126706,
A355432,
A360432,
A360768,
A361098,
A363082,
A364997,
A364999.
-
Select[Select[Range[1500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r <= k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A364997
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) > k but rad(k)*A053669(k) < k.
Original entry on oeis.org
40, 45, 56, 63, 88, 99, 104, 117, 136, 152, 153, 171, 175, 176, 184, 207, 208, 232, 248, 261, 272, 275, 279, 280, 296, 297, 304, 315, 325, 328, 333, 344, 351, 368, 369, 376, 387, 423, 424, 425, 440, 459, 464, 472, 475, 477, 488, 495, 496, 513, 520, 531, 536, 539
Offset: 1
Let b(n) = A126706(n), S = A360767, and T = A360765.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is in S but not in T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, neither is less than 18, hence 18 is not in S but is in T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is not in S but is in T.
b(7) = a(1) = 40 since p*r = 5*10 = 50 and q*r = 3*10 = 30. We have both 50 > 40 and 30 < 40, thus 40 is in both S and T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus for n = 1..400. Terms in this sequence are colored black, those in A364999 in blue, in A364998 in gold, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus for n = 1..14400 using the same color scheme as immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms b(n) in this sequence are colored black, else white.
Cf.
A007947,
A053669,
A119288,
A126706,
A355432,
A360432,
A360765,
A360767,
A361098,
A364998,
A364999.
-
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r < k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A359280
Powerful numbers that are neither prime powers nor powers of squarefree composites.
Original entry on oeis.org
72, 108, 144, 200, 288, 324, 392, 400, 432, 500, 576, 648, 675, 784, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2304, 2312, 2500, 2592, 2700, 2704, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3600, 3872, 3888, 3969
Offset: 1
Let b(n) = A286708(n).
b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2.
b(2) = a(1) = 72 since 72 is not a perfect power of rad(72).
b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence.
b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6.
b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6.
b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot A001694(ym + x) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and both prime powers and those in A303606 in white.
- Michael De Vlieger, Plot A286708(n) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and those in A303606 in white.
-
nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A359280(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
j = isqrt(x)
c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return bisection(f,n,n) # Chai Wah Wu, Feb 09 2025
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 90, 92, 99, 104, 116, 117, 120, 124, 126, 132, 136, 140, 148, 150, 152, 153, 156, 164, 168, 171, 172, 175, 176, 180, 184, 188, 198, 204, 207, 208, 212, 220, 228, 232, 234, 236, 244, 248, 260, 261
Offset: 1
This sequence is A126706 \ A361098.
Union of A364997, A364998, A364999.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, List of A126706(1..400), 20 in a row. Terms in this sequence are circled, while those in small colored circles appear in A361098. Blue represents numbers in A364702, purple A359280, and magenta A303606.
- Michael De Vlieger, Plot b(n) at (x,y) = (n mod 1024, -floor(n/1024)), where terms in this sequence are shown in black, and those in A361098 appear in white.
-
Select[Select[Range[261], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, Or[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A364999
Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.
Original entry on oeis.org
12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524, 532, 548
Offset: 1
Let b(n) = A126706(n), S = A360767, and T = A363082.
b(1) = a(1) = 12 since p*r = 3*6 = 18 and q*r = 5*6 = 30, and both exceed 12. Indeed, 12 is in both S and T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18; 18 is not in S.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, and is not in T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), with n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus showing 400 terms. Terms in this sequence are colored black, those in A364998 in gold, in A364997 in green, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), with n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus showing 14400 terms. This uses the same color scheme as described immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms in this sequence are colored black, else white. Demonstrates fairly constant density of a(n) in A126706 as well as a slight quasiperiodic pattern approximately mod 169.
Cf.
A007947,
A039956,
A053669,
A081770,
A088860,
A092742,
A119288,
A126706,
A355432,
A360432,
A360767,
A361098,
A363082,
A364998,
A364999.
-
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A372972
Numbers k such that A372720(k) is negative.
Original entry on oeis.org
162, 250, 324, 384, 486, 648, 686, 768, 972, 1152, 1250, 1296, 1372, 1458, 1536, 1728, 1875, 1944, 2058, 2250, 2304, 2430, 2500, 2560, 2592, 2662, 2738, 2916, 3000, 3072, 3362, 3402, 3456, 3698, 3750, 3840, 3888, 3993, 4050, 4116, 4374, 4394, 4418, 4500, 4608
Offset: 1
a(1) = 162 = 2*3^4, since tau(162) - f(162)
= (1+1)*(4+1) - card(A369609(162))
= 10 - 12 = -2.
a(2) = 250 = 2*5^3, since tau(250) - f(250)
= (1+1)*(3+1) - card(A369609(250))
= 8 - 9 = -1.
a(3) = 324 = 2^2*3^4, since tau(324) - f(324)
= (2+1)*(4+1) - card(A369609(324))
= 15 - 16 = -1, etc.
A363596
a(n) = (Product_{k=1..pi(n+1)} prime(k)^floor(n/(prime(k)-1) ) )/(n+1)!.
Original entry on oeis.org
1, 1, 2, 1, 6, 2, 12, 3, 10, 2, 12, 2, 420, 60, 24, 3, 90, 10, 420, 42, 660, 60, 360, 30, 3276, 252, 56, 4, 120, 8, 3696, 231, 3570, 210, 36, 2, 103740, 5460, 840, 42, 13860, 660, 27720, 1260, 19320, 840, 5040, 210, 198900, 7956, 10296, 396, 11880, 440, 6384, 228
Offset: 0
The table below relates b(n) = A091137(n) to a(n), with (n+1)!*a(n) = k!*m = b(n), where k! is the largest factorial that divides b(n).
n A067255(b(n)) (n+1)!*a(n) k! * m
---------------------------------------
0 0 1! * 1 1! * 1
1 1 2! * 1 2! * 1
2 2.1 3! * 2 3! * 2
3 3.1 4! * 1 4! * 1
4 4.2.1 5! * 6 6! * 1
5 5.2.1 6! * 2 6! * 2
6 6.3.1.1 7! * 12 7! * 12
7 7.3.1.1 8! * 3 8! * 3
8 8.4.2.1 9! * 10 10! * 1
9 9.4.2.1 10! * 2 10! * 2
10 10.5.2.1.1 11! * 12 12! * 1
11 11.5.2.1.1 12! * 2 12! * 2
12 12.6.3.2.1.1 13! * 420 15! * 2
13 13.6.3.2.1.1 14! * 60 15! * 4
14 14.7.3.2.1.1 15! * 24 15! * 24
15 15.7.3.2.1.1 16! * 3 16! * 3
16 16.8.4.2.1.1.1 17! * 90 18! * 5
...
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See p. 10.
- Michael De Vlieger, Log log scatterplot of a(n+1), n = 0..10^4.
- Michael De Vlieger, Plot p(k)^e(k) | a(n) at (x, y) = (n, k), n = 0..2^11, with a color function representing e(k), where black = 1, red = 2, and the largest exponent in the dataset shown in magenta. The bar at bottom shows the number 1 in black, primes in red, composite prime powers in gold, squarefree terms in green, and terms that are neither squarefree nor prime powers in blue.
-
Table[j = 1; ( Times @@ Reap[While[Sow[#^Floor[n/(# - 1)]] &[Prime[j]] > 1, j++]][[-1, 1]] )/Factorial[n + 1], {n, 0, 60}]
-
from math import prod, factorial
from sympy import sieve
def A363596(n: int) -> int:
numer = prod(p ** (n // (p - 1)) for p in sieve.primerange(2, n + 2))
return numer // factorial(n + 1)
print([A363596(n) for n in range(56)]) # Peter Luschny, Aug 17 2025
A372864
Numbers k such that A372720(k) = 0.
Original entry on oeis.org
1, 500, 578, 722, 750, 1058, 1500, 1682, 1922, 2646, 2744, 3430, 3645, 4800, 5202, 5346, 5476, 5488, 5625, 6318, 6400, 6724, 7168, 7396, 8000, 8836, 10092, 10976, 11236, 11532, 11979, 12005, 13068, 13924, 14450, 14884, 15309, 16810, 16875, 16896, 18050, 18225
Offset: 1
a(1) = 1 since tau(1) - f(1) = 1 - 1 = 0.
a(2) = 500 = 2^2 * 5*3, since tau(500) - f(500)
= (2+1)*(3+1) - card({10,20,40,50,80,100,160,200,250,320,400,500})
= 12 - 12 = 0.
a(3) = 578 = 2*17^2, since tau(578) - f(578)
= (1+1)*(2+1) - card({34,68,136,272,544,578})
= 6 - 6 = 0, etc.
A367708
Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).
Original entry on oeis.org
50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1
Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
= 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
= 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
= 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
= {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
Cf.
A002182,
A003586,
A053669,
A119288,
A120944,
A168263,
A341645,
A361098,
A364702,
A366250,
A367511.
-
nn = 756;
Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
{#1/#4, #2, #3, #4, #5} & @@
{#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
{#, FactorInteger[#], If[OddQ[#], 2,
q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Showing 1-10 of 11 results.
Comments