Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 90, 92, 99, 104, 116, 117, 120, 124, 126, 132, 136, 140, 148, 150, 152, 153, 156, 164, 168, 171, 172, 175, 176, 180, 184, 188, 198, 204, 207, 208, 212, 220, 228, 232, 234, 236, 244, 248, 260, 261
Offset: 1
This sequence is A126706 \ A361098.
Union of A364997, A364998, A364999.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, List of A126706(1..400), 20 in a row. Terms in this sequence are circled, while those in small colored circles appear in A361098. Blue represents numbers in A364702, purple A359280, and magenta A303606.
- Michael De Vlieger, Plot b(n) at (x,y) = (n mod 1024, -floor(n/1024)), where terms in this sequence are shown in black, and those in A361098 appear in white.
-
Select[Select[Range[261], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, Or[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A366250
Numbers k that are not powerful and do not have a strictly superior squarefree divisor.
Original entry on oeis.org
48, 54, 96, 160, 162, 192, 224, 250, 320, 375, 384, 405, 448, 486, 567, 640, 686, 704, 768, 832, 896, 960, 1029, 1080, 1200, 1215, 1250, 1280, 1350, 1408, 1440, 1458, 1500, 1536, 1620, 1664, 1701, 1715, 1792, 1875, 1920, 2016, 2058, 2160, 2176, 2250, 2268, 2352
Offset: 1
Let b(n) = A364702(n).
a(1) = b(1) = 48 since rad(48) < 48/rad(48), 6 < 8.
b(2) = 50 is not in the sequence since rad(50) > 50/rad(50), 10 > 5.
a(2) = b(3) = 54 since 6 < 9, etc.
-
Select[Range[2, 2400], And[! AllTrue[#2[[All, -1]], # > 1 &], #1 >= Apply[Times, #2[[All, 1]]^2]] & @@ {#, FactorInteger[#]} &]
-
isok(m) = if (!ispowerful(m), my(d=divisors(m)); #select(x->(issquarefree(x) && (x^2>m)), d) == 0); \\ Michel Marcus, Feb 11 2024
A360589
Numbers k that set records in A355432.
Original entry on oeis.org
1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 56250, 61440, 65610, 93750, 122880, 168750, 182250, 187500, 196830, 245760, 281250, 328050, 360150, 375000, 393660
Offset: 1
Let rad(m) = A007947(m).
a(1) = 1 since 1 is the empty product.
a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18).
a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48).
a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc.
Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2.
a(n) = A055932(i) and has A360912(n) nondivisors k < a(n) such that rad(k) = rad(a(n)).
n a(n) A067255(a(n)) i A360912(n)
----------------------------------------
1 1 0 1 0
2 18 1.2 8 1
3 48 4.1 13 2
4 54 1.3 14 4
5 162 1.4 25 8
6 384 7.1 37 10
7 486 1.5 42 14
8 1350 1.3.2 65 16
9 1458 1.6 67 21
10 2250 1.2.3 81 23
11 2430 1.5.1 85 26
12 3750 1.1.4 99 33
...
- Michael De Vlieger, Table of n, a(n) for n = 1..2071
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n, pi(p)), n = 1..2071, 24X vertical exaggeration, with a color function that represents m = 1 in black, m = 2 in red, m = 3 in orange, ... m = 34 in magenta. (Represents column "A067255(a(n))" in table in Example below.)
-
rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]
A367511
Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().
Original entry on oeis.org
1, 4, 36, 48, 45360, 50400
Offset: 1
Let P(n) = A002110(n).
a(1) = h(1) = 1 since 1 >= 1^2.
a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2.
a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2.
a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2.
a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100.
a(6) = h(27) = 50400 since 50400 >= P(4)^2.
Let V(i) = A301414(i) and let P(j) = A002110(j).
Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*):
V(i)\P(j) 1 2 6 30 210 2310 30030 ...
+---------------------------------------
1 |(1*) 2* 6*
2 | (4*) 12* 60*
4 | 24* 120* 840*
6 | (36) 180* 1260*
8 | (48) 240 1680*
12 | 360 2520 27720*
24 | 720 5040 55440 720720
36 | 7560 83160 1081080
48 | 10080 110880 1441440
72 | 15120 166320 2162160
96 | 20160 221760 2882880
120 | 25200 277200 3603600
144 | 332640 4324320
216 | (45360) 498960 6486480
240 | (50400) 554400 7207200
...
Cf.
A001221,
A002110,
A002182,
A007947,
A025487,
A108602,
A126706,
A131605,
A168263,
A286708,
A301413,
A301414,
A303606,
A332785,
A365308,
A362702,
A366250.
-
(* First load function f at A025487, then run the following: *)
s = Union@ Flatten@ f[12];
t = Map[DivisorSigma[0, #] &, s];
h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]];
Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ],
{i, Length[h]}] ][[-1, 1]]
A367708
Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).
Original entry on oeis.org
50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1
Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
= 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
= 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
= 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
= {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
Cf.
A002182,
A003586,
A053669,
A119288,
A120944,
A168263,
A341645,
A361098,
A364702,
A366250,
A367511.
-
nn = 756;
Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
{#1/#4, #2, #3, #4, #5} & @@
{#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
{#, FactorInteger[#], If[OddQ[#], 2,
q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Showing 1-5 of 5 results.
Comments